Reconfigurable Anisotropic Coatings via Magnetic Field-Directed Assembly and Translocation of Locking Magnetic Chains

被引:30
作者
Tokarev, Alexander [1 ,2 ]
Gu, Yu [3 ]
Zakharchenko, Andrey [1 ,2 ]
Trotsenko, Oleksandr [1 ,2 ]
Luzinov, Igor [3 ]
Kornev, Konstantin G. [3 ]
Minko, Sergiy [1 ,2 ]
机构
[1] Clarkson Univ, Dept Chem & Biomol Sci, Potsdam, NY 13699 USA
[2] Univ Georgia, Nanostruct Mat Lab, Athens, GA 30602 USA
[3] Clemson Univ, Dept Mat Sci & Engn, Clemson, SC 29634 USA
基金
美国国家科学基金会;
关键词
CDSE QUANTUM WIRES; NANOPARTICLES; FABRICATION; NANOWIRES; EVOLUTION; GROWTH; FLUID;
D O I
10.1002/adfm.201303358
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A method for the generation of remotely reconfigurable anisotropic coatings is developed. To form these coatings, locking magnetic nanoparticles (LMNPs) made of a superparamagnetic core and a two-component polymer shell are employed. Two different polymers form phase-separated coaxial shells. The outer shell provides repulsive interactions between the LMNPs while the inner shell exerts attractive forces between the particles. Applying a non-uniform magnetic field, one gathers the particles together, pushing them to come in contact when the internal shells could effectively hold the particles together. When the magnetic field is turned off, the particles remain locked due to these strong interactions between internal shells. The shells are thus made stimuli-responsive, so this locking can be made reversible and the chains can be disintegrated on demand. In a non-uniform magnetic field, the assembled chains translocate, bind to the solid substrate and form anisotropic coatings with a "locked" anisotropic structure. The coatings can be constructed, aligned, realigned, degraded, and generated again on demand by changing the magnetic field and particle environment. The mechanism of the coating formation is explained using experimental observations and a theoretical model.
引用
收藏
页码:4738 / 4745
页数:8
相关论文
共 48 条
[1]  
[Anonymous], 1997, Magnetic fluids, DOI 10.1515/9783110807356
[2]   Modelling the formation of high aspect CdSe quantum wires: axial-growth versus oriented-attachment mechanisms [J].
Barnard, Amanda S. ;
Xu, Huifang ;
Li, Xiaochun ;
Pradhan, Narayan ;
Peng, Xiaogang .
NANOTECHNOLOGY, 2006, 17 (22) :5707-5714
[3]   Field induced formation of mesoscopic polymer chains from functional ferromagnetic colloids [J].
Benkoski, Jason J. ;
Bowles, Steven E. ;
Korth, Bryan D. ;
Jones, Ronald L. ;
Douglas, Jack F. ;
Karim, Alamgir ;
Pyun, Jeffrey .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (19) :6291-6297
[4]   MR fluid, foam and elastomer devices [J].
Carlson, JD ;
Jolly, MR .
MECHATRONICS, 2000, 10 (4-5) :555-569
[5]  
Chou T.-W., 1992, MICROSTRUCTURAL DESI
[6]   Linear assemblies of magnetic nanoparticles as MRI contrast agents [J].
Corr, Serena A. ;
Byrne, Stephen J. ;
Tekoriute, Renata ;
Meledandri, Carla J. ;
Brougham, Dermot F. ;
Lynch, Marina ;
Kerskens, Christian ;
O'Dwyer, Laurence ;
Gun'ko, Yurii K. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (13) :4214-+
[7]   Composites Reinforced in Three Dimensions by Using Low Magnetic Fields [J].
Erb, Randall M. ;
Libanori, Rafael ;
Rothfuchs, Nuria ;
Studart, Andre R. .
SCIENCE, 2012, 335 (6065) :199-204
[8]   Magnetization and actuation of polymeric microstructures with magnetic nanoparticles for application in microfluidics [J].
Fahrni, F. ;
Prins, M. W. J. ;
van IJzendoorn, L. J. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2009, 321 (12) :1843-1850
[9]   STRUCTURE EVOLUTION IN A PARAMAGNETIC LATEX SUSPENSION [J].
FERMIGIER, M ;
GAST, AP .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1992, 154 (02) :522-539
[10]   Magnetic field-responsive smart polymer composites [J].
Filipcsei, Genoveva ;
Csetneki, Ildiko ;
Szilagyi, Andras ;
Zrinyi, Miklos .
OLIGOMERS POLYMER COMPOSTIES MOLECULAR IMPRINTING, 2007, 206 :137-189