Nanoscale Carbon Greatly Enhances Mobility of a Highly Viscous Ionic Liquid

被引:70
作者
Chaban, Vitaly V. [1 ,2 ]
Prezhdo, Oleg V. [2 ]
机构
[1] Univ So Denmark, Ctr Biomembrane Phys, MEMPHYS, DK-5230 Odense M, Denmark
[2] Univ Rochester, Dept Chem, Rochester, NY 14627 USA
基金
美国国家科学基金会; 新加坡国家研究基金会;
关键词
carbon nanotube; ionic liquid; encapsulation; diffusion; simulation; battery; MOLECULAR SIMULATION; NANOTUBE MEMBRANES; WATER TRANSPORT; FORCE-FIELD; MASS-TRANSPORT; DYNAMICS; DIFFUSION; CHANNELS; DENSITY; PERFORMANCE;
D O I
10.1021/nn502475j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The ability to encapsulate molecules is one of the outstanding features of nanotubes. The encapsulation alters physical and chemical properties of both nanotubes and guest species. The latter normally form a separate phase, exhibiting drastically different behavior compared to the bulk. Ionic liquids (ILs) and apolar carbon nanotubes (CNTs) are disparate objects; nevertheless, their interaction leads to spontaneous CNT filling with ILs. Moreover, ionic diffusion of highly viscous ILs can increase 5-fold inside CNTs, approaching that of molecular liquids, even though the confined IL phase still contains exclusively ions. We exemplify these unusual effects by computer simulation on a highly hydrophilic, electrostatically structured, and immobile 1-ethyl-3-methylimidazolium chloride, [C2C1IM][CI]. Self-diffusion constants and energetic properties provide microscopic interpretation of the observed phenomena. Governed by internal energy and entropy rather than external work, the kinetics of CNT filling is characterized in detail The significant growth of the IL mobility induced by nanoscale carbon promises important advances in electricity storage devices.
引用
收藏
页码:8190 / 8197
页数:8
相关论文
共 48 条
[11]   A new force field model for the simulation of transport properties of imidazolium-based ionic liquids [J].
Chaban, Vitaly V. ;
Voroshylova, Iuliia V. ;
Kalugin, Oleg N. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (17) :7910-7920
[12]   Zwitterion Functionalized Carbon Nanotube/Polyamide Nanocomposite Membranes for Water Desalination [J].
Chan, Wai-Fong ;
Chen, Hang-yan ;
Surapathi, Anil ;
Taylor, Michael G. ;
Shao, Xiaohong ;
Marand, Eva ;
Johnson, J. Karl .
ACS NANO, 2013, 7 (06) :5308-5319
[13]   Comparison of Structure and Dynamics of Polar and Nonpolar Fluids through Carbon Nanotubes [J].
Chopra, Manish ;
Choudhury, Niharendu .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (36) :18398-18405
[14]   Impact of Synthesis Methods on the Transport of Single Walled Carbon Nanotubes in the Aquatic Environment [J].
Chowdhury, Indranil ;
Duch, Mathew C. ;
Gits, Colton C. ;
Hersam, Mark C. ;
Walker, Sharon L. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2012, 46 (21) :11752-11760
[15]   Carbon Nanotubes: Present and Future Commercial Applications [J].
De Volder, Michael F. L. ;
Tawfick, Sameh H. ;
Baughman, Ray H. ;
Hart, A. John .
SCIENCE, 2013, 339 (6119) :535-539
[16]   Water Transport with a Carbon Nanotube Pump [J].
Duan, Wen Hui ;
Wang, Quan .
ACS NANO, 2010, 4 (04) :2338-2344
[17]   CAPILLARITY AND WETTING OF CARBON NANOTUBES [J].
DUJARDIN, E ;
EBBESEN, TW ;
HIURA, H ;
TANIGAKI, K .
SCIENCE, 1994, 265 (5180) :1850-1852
[18]   Synthesis and micellar properties of surface-active ionic liquids: 1-Alkyl-3-methylimidazolium chlorides [J].
El Seoud, Omar A. ;
Pires, Paulo Augusto R. ;
Abdel-Moghny, Thanaa ;
Bastos, Erick L. .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2007, 313 (01) :296-304
[19]   Density functional theory with dispersion corrections for supramolecular structures, aggregates, and complexes of (bio)organic molecules [J].
Grimme, Stefan ;
Antony, Jens ;
Schwabe, Tobias ;
Mueck-Lichtenfeld, Christian .
ORGANIC & BIOMOLECULAR CHEMISTRY, 2007, 5 (05) :741-758
[20]   GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation [J].
Hess, Berk ;
Kutzner, Carsten ;
van der Spoel, David ;
Lindahl, Erik .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2008, 4 (03) :435-447