Enabling low-noise null-point scanning thermal microscopy by the optimization of scanning thermal microscope probe through a rigorous theory of quantitative measurement

被引:22
作者
Hwang, Gwangseok [1 ]
Chung, Jaehun [1 ]
Kwon, Ohmyoung [1 ]
机构
[1] Korea Univ, Dept Mech Engn, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
TRANSPORT; THERMOREFLECTANCE; THERMOMETRY; FABRICATION; TRANSISTORS; MECHANISMS; CONDUCTION; GRAPHENE; FAILURE; DEVICES;
D O I
10.1063/1.4901094
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The application of conventional scanning thermal microscopy (SThM) is severely limited by three major problems: (i) distortion of the measured signal due to heat transfer through the air, (ii) the unknown and variable value of the tip-sample thermal contact resistance, and (iii) perturbation of the sample temperature due to the heat flux through the tip-sample thermal contact. Recently, we proposed null-point scanning thermal microscopy (NP SThM) as a way of overcoming these problems in principle by tracking the thermal equilibrium between the end of the SThM tip and the sample surface. However, in order to obtain high spatial resolution, which is the primary motivation for SThM, NP SThM requires an extremely sensitive SThM probe that can trace the vanishingly small heat flux through the tip-sample nano-thermal contact. Herein, we derive a relation between the spatial resolution and the design parameters of a SThM probe, optimize the thermal and electrical design, and develop a batch-fabrication process. We also quantitatively demonstrate significantly improved sensitivity, lower measurement noise, and higher spatial resolution of the fabricated SThM probes. By utilizing the exceptional performance of these fabricated probes, we show that NP SThM can be used to obtain a quantitative temperature profile with nanoscale resolution independent of the changing tip-sample thermal contact resistance and without perturbation of the sample temperature or distortion due to the heat transfer through the air. (c) 2014 AIP Publishing LLC.
引用
收藏
页数:10
相关论文
共 43 条
[1]   Electron and Optical Phonon Temperatures in Electrically Biased Graphene [J].
Berciaud, Stephane ;
Han, Melinda Y. ;
Mak, Kin Fai ;
Brus, Louis E. ;
Kim, Philip ;
Heinz, Tony F. .
PHYSICAL REVIEW LETTERS, 2010, 104 (22)
[2]   Imaging Joule heating in a conjugated-polymer light-emitting diode using a scanning thermal microscope [J].
Boroumand, FA ;
Voigt, M ;
Lidzey, DG ;
Hammiche, A ;
Hill, G .
APPLIED PHYSICS LETTERS, 2004, 84 (24) :4890-4892
[3]   Thermal contact resistance between graphene and silicon dioxide [J].
Chen, Z. ;
Jang, W. ;
Bao, W. ;
Lau, C. N. ;
Dames, C. .
APPLIED PHYSICS LETTERS, 2009, 95 (16)
[4]   The effect of electrode heat sink in organic-electronic devices [J].
Choi, Sang Hun ;
Lee, Tae Il ;
Baik, Hong Koo ;
Roh, Hee Hwan ;
Kwon, Ohmyoung ;
Suh, Dong hak .
APPLIED PHYSICS LETTERS, 2008, 93 (18)
[5]   Thermoreflectance based thermal microscope [J].
Christofferson, J ;
Shakouri, A .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2005, 76 (02) :024903-1
[6]   Quantitative temperature profiling through null-point scanning thermal microscopy [J].
Chung, J. ;
Kim, K. ;
Hwang, G. ;
Kwon, O. ;
Choi, Y. K. ;
Lee, J. S. .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2012, 62 :109-113
[7]   Quantitative temperature measurement of an electrically heated carbon nanotube using the null-point method [J].
Chung, Jaehun ;
Kim, Kyeongtae ;
Hwang, Gwangseok ;
Kwon, Ohmyoung ;
Jung, Seungwon ;
Lee, Junghoon ;
Lee, Jae Woo ;
Kim, Gyu Tae .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (11)
[8]   CCD-based thermoreflectance microscopy: principles and applications [J].
Farzaneh, M. ;
Maize, K. ;
Luerssen, D. ;
Summers, J. A. ;
Mayer, P. M. ;
Raad, P. E. ;
Pipe, K. P. ;
Shakouri, A. ;
Ram, R. J. ;
Hudgings, Janice A. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (14)
[9]   Thermal characterization of power devices by scanning thermal microscopy techniques [J].
Fiege, GBM ;
Niedernostheide, FJ ;
Schulze, HJ ;
Barthelmess, R ;
Balk, LJ .
MICROELECTRONICS RELIABILITY, 1999, 39 (6-7) :1149-1152
[10]   Failure analysis of integrated devices by Scanning Thermal Microscopy (SThM) [J].
Fiege, GBM ;
Feige, V ;
Phang, JCH ;
Maywald, M ;
Gorlich, S ;
Balk, LJ .
MICROELECTRONICS RELIABILITY, 1998, 38 (6-8) :957-961