MATERIALS RESEARCH AND APPLICATIONS, PTS 1-3
|
2014年
/
875-877卷
关键词:
Railhead;
Non-destructive testing;
Eddy current testing;
Finite element simulation;
Side transverse crack;
D O I:
10.4028/www.scientific.net/AMR.875-877.593
中图分类号:
T [工业技术];
学科分类号:
08 ;
摘要:
This study investigated the use of an eddy current technique for detecting side transverse cracks in a railhead. Quantitative analysis of defect signals in a railhead with side transverse cracks was realized through actual defect detection and finite-element simulation. In eddy current testing of the railhead, first, the general pattern of variation in the detected signals was obtained for different sizes of cracks via actual defect detection of rail samples. Then, finite-element simulation was used to verify the accuracy of the experimental results and to test the relationships between the detected signals and the size and depth of the cracks. The simulation results show that an extremely linear relation between crack depth and output signals in quantitative length of crack cases. In the results, simulation results can be applied to the analysis of the actual detected data. The eddy-current-defect detection method that combined experiment with simulation was very effective and can be applied in future research.
机构:
Tsinghua Univ, Dept Elect Engn, State Key Lab Power Syst, Beijing 100084, Peoples R ChinaTsinghua Univ, Dept Elect Engn, State Key Lab Power Syst, Beijing 100084, Peoples R China
Li Shu
;
Huang Songling
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Dept Elect Engn, State Key Lab Power Syst, Beijing 100084, Peoples R ChinaTsinghua Univ, Dept Elect Engn, State Key Lab Power Syst, Beijing 100084, Peoples R China
Huang Songling
;
Zhao Wei
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Dept Elect Engn, State Key Lab Power Syst, Beijing 100084, Peoples R ChinaTsinghua Univ, Dept Elect Engn, State Key Lab Power Syst, Beijing 100084, Peoples R China
机构:
Tsinghua Univ, Dept Elect Engn, State Key Lab Power Syst, Beijing 100084, Peoples R ChinaTsinghua Univ, Dept Elect Engn, State Key Lab Power Syst, Beijing 100084, Peoples R China
Li Shu
;
Huang Songling
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Dept Elect Engn, State Key Lab Power Syst, Beijing 100084, Peoples R ChinaTsinghua Univ, Dept Elect Engn, State Key Lab Power Syst, Beijing 100084, Peoples R China
Huang Songling
;
Zhao Wei
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Dept Elect Engn, State Key Lab Power Syst, Beijing 100084, Peoples R ChinaTsinghua Univ, Dept Elect Engn, State Key Lab Power Syst, Beijing 100084, Peoples R China