Infinitely many solutions for a nonlinear Klein-Gordon-Maxwell System

被引:38
作者
Li, Lin [1 ]
Tang, Chun-Lei [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
基金
中国国家自然科学基金;
关键词
Klein-Gordon-Maxwell System; Variational methods; Critical point theorem; SCHRODINGER-POISSON EQUATIONS; GROUND-STATE SOLUTIONS; SOLITARY WAVES; EXISTENCE; MULTIPLICITY; NONEXISTENCE;
D O I
10.1016/j.na.2014.07.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a nonlinear Klein-Gordon-Maxwell System with solitary wave solution is considered. Using critical point theory, we establish sufficient conditions for the existence of infinitely many solitary wave solutions. Results obtained complement and improve the existing ones. (C) 2014 Elsevier Ltd.
引用
收藏
页码:157 / 169
页数:13
相关论文
共 50 条
[41]   Klein-Gordon-Maxwell System with Partially Sublinear Nonlinearity [J].
Li, Lin ;
Chen, Shang-Jie ;
Song, Shu-Zhi .
COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2018, 9 (02) :239-247
[42]   Improved results on planar Klein-Gordon-Maxwell system with critical exponential growth [J].
Wen, Lixi ;
Jin, Peng .
ADVANCES IN NONLINEAR ANALYSIS, 2024, 13 (01)
[43]   Generalized semi-local Klein-Gordon-Maxwell equations [J].
Sohn, Juhee .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2022, 29 (06)
[44]   Existence and Related Properties of Solutions for Klein-Gordon-Maxwell Systems [J].
Liu, Xiao-Qi ;
Tang, Chun-Lei .
MATHEMATICS, 2025, 13 (12)
[45]   Multiple Solutions for the Klein-Gordon-Maxwell System with Steep Potential Well [J].
Xiao-qi Liu ;
Chun-lei Tang .
Acta Mathematicae Applicatae Sinica, English Series, 2021, 37 :155-165
[46]   ON SEMILOCAL KLEIN-GORDON-MAXWELL EQUATIONS [J].
Han, Jongmin ;
Sohn, Juhee ;
Yo, Yeong Seok .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (05) :1131-1145
[47]   IMPROVED RESULTS FOR KLEIN-GORDON-MAXWELL SYSTEMS WITH GENERAL NONLINEARITY [J].
Chen, Sitong ;
Tang, Xianhua .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (05) :2333-2348
[48]   Existence result for the critical Klein-Gordon-Maxwell system involving steep potential well [J].
Gan, Canlin ;
Wang, Weiwei .
AIMS MATHEMATICS, 2023, 8 (11) :26665-26681
[49]   Ground State Solutions for the Critical Klein-Gordon-Maxwell System [J].
Lixia Wang ;
Xiaoming Wang ;
Luyu Zhang .
Acta Mathematica Scientia, 2019, 39 :1451-1460
[50]   Multiple solutions for nonhomogeneous Klein-Gordon-Maxwell system with Berestycki-Lions conditions [J].
Wu, Xing-Ping ;
Liu, Xiao-Qi .
APPLIED MATHEMATICS LETTERS, 2023, 137