Infinitely many solutions for a nonlinear Klein-Gordon-Maxwell System

被引:38
作者
Li, Lin [1 ]
Tang, Chun-Lei [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
基金
中国国家自然科学基金;
关键词
Klein-Gordon-Maxwell System; Variational methods; Critical point theorem; SCHRODINGER-POISSON EQUATIONS; GROUND-STATE SOLUTIONS; SOLITARY WAVES; EXISTENCE; MULTIPLICITY; NONEXISTENCE;
D O I
10.1016/j.na.2014.07.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a nonlinear Klein-Gordon-Maxwell System with solitary wave solution is considered. Using critical point theory, we establish sufficient conditions for the existence of infinitely many solitary wave solutions. Results obtained complement and improve the existing ones. (C) 2014 Elsevier Ltd.
引用
收藏
页码:157 / 169
页数:13
相关论文
共 50 条
[31]   Multiple solutions for nonhomogeneous Klein-Gordon-Maxwell equations on R3 [J].
Chen, Shang-Jie ;
Song, Shu-Zhi .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 22 :259-271
[32]   Klein-Gordon-Maxwell Equations Driven by Mixed Local-Nonlocal Operators [J].
Cangiotti, Nicolo ;
Caponi, Maicol ;
Maione, Alberto ;
Vitillaro, Enzo .
MILAN JOURNAL OF MATHEMATICS, 2023, 91 (02) :375-403
[33]   Existence of nontrivial solutions for the Klein-Gordon-Maxwell system with Berestycki-Lions conditions [J].
Liu, Xiao-Qi ;
Li, Gui-Dong ;
Tang, Chun-Lei .
ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01)
[34]   NONRADIAL SOLUTIONS FOR THE KLEIN-GORDON-MAXWELL EQUATIONS [J].
Makita, Percy D. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (06) :2271-2283
[35]   Solitary waves for the Klein-Gordon-Maxwell system with critical exponent [J].
Wang, Feizhi .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (03) :827-835
[36]   Existence Results for the Klein-Gordon-Maxwell System in Rotationally Symmetric Bounded Domains [J].
Wu, Yuhu ;
Ge, Bin ;
Miyagaki, Olimpio H. .
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2019, 38 (02) :209-229
[37]   KLEIN-GORDON-MAXWELL SYSTEMS IN A BOUNDED DOMAIN [J].
d'Avenia, Pietro ;
Pisani, Lorenzo ;
Siciliano, Gaetano .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 26 (01) :135-149
[38]   Improved results of nontrivial solutions for a nonlinear nonhomogeneous Klein-Gordon-Maxwell system involving sign-changing potential [J].
Gan, Canlin ;
Xiao, Ting ;
Zhang, Qiongfen .
ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
[39]   Some results of nontrivial solutions for Klein-Gordon-Maxwell systems with local super-quadratic conditions [J].
Zhang, Qiongfen ;
Gan, Canlin ;
Xiao, Ting ;
Jia, Zhen .
JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (05) :5372-5394
[40]   Existence and multiplicity of solutions for Klein-Gordon-Maxwell systems with sign-changing potentials [J].
Wei, Chongqing ;
Li, Anran .
ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)