Infinitely many solutions for a nonlinear Klein-Gordon-Maxwell System

被引:38
作者
Li, Lin [1 ]
Tang, Chun-Lei [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
基金
中国国家自然科学基金;
关键词
Klein-Gordon-Maxwell System; Variational methods; Critical point theorem; SCHRODINGER-POISSON EQUATIONS; GROUND-STATE SOLUTIONS; SOLITARY WAVES; EXISTENCE; MULTIPLICITY; NONEXISTENCE;
D O I
10.1016/j.na.2014.07.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a nonlinear Klein-Gordon-Maxwell System with solitary wave solution is considered. Using critical point theory, we establish sufficient conditions for the existence of infinitely many solitary wave solutions. Results obtained complement and improve the existing ones. (C) 2014 Elsevier Ltd.
引用
收藏
页码:157 / 169
页数:13
相关论文
共 50 条
[21]   Existence and multiplicity of solutions for Klein-Gordon-Maxwell system with a local sublinear term [J].
Duan, Yu ;
Sun, Xin ;
Liu, Jiu .
LITHUANIAN MATHEMATICAL JOURNAL, 2025, 65 (02) :226-239
[22]   Multiple Solutions for 4-superlinear Klein-Gordon-Maxwell System Without Odd Nonlinearity [J].
Li, Lin ;
Boucherif, Abdelkader ;
Daoudi-Merzagui, Naima .
TAIWANESE JOURNAL OF MATHEMATICS, 2017, 21 (01) :151-165
[23]   An improved result for a class of Klein-Gordon-Maxwell system with quasicritical potential vanishing at infinity [J].
Gan, Canlin ;
Xiao, Ting ;
Zhang, Qiongfen .
MATHEMATISCHE NACHRICHTEN, 2023, 296 (08) :3318-3327
[24]   Ground state solutions of a Klein-Gordon-Maxwell system for two scalar fields [J].
Han, Jongmin ;
Sohn, Juhee .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (09) :11112-11129
[25]   Sign-changing solutions for a kind of Klein-Gordon-Maxwell system [J].
Zhang, Qi .
JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (09)
[26]   Existence of positive ground state solutions of critical nonlinear Klein-Gordon-Maxwell systems [J].
Xu, Liping ;
Chen, Haibo .
ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2022, (44) :1-19
[27]   Multiple positive solutions for nonhomogeneous Klein-Gordon-Maxwell equations [J].
Shi, Hongxia ;
Chen, Haibo .
APPLIED MATHEMATICS AND COMPUTATION, 2018, 337 :504-513
[28]   EXISTENCE AND MULTIPLICITY OF NONTRIVIAL SOLUTIONS FOR KLEIN-GORDON-MAXWELL SYSTEM WITH A PARAMETER [J].
Che, Guofeng ;
Chen, Haibo .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (03) :1015-1030
[29]   On the Existence of Ground States for a Nonlinear Klein-Gordon-Maxwell Type System [J].
Colin, Mathieu ;
Watanabe, Tatsuya .
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2018, 61 (01) :1-14
[30]   Nonexistence and existence of nontrivial solutions for Klein-Gordon-Maxwell systems with competing nonlinearities [J].
Wei, Chongqing ;
Li, Anran .
BOUNDARY VALUE PROBLEMS, 2019, 2019 (1)