Groups and nilpotent Lie rings whose order is the sixth power of a prime

被引:37
作者
Newman, MF [1 ]
O'Brien, EA
Vaughan-Lee, MR
机构
[1] Australian Natl Univ, Math Sci Inst, Canberra, ACT 0200, Australia
[2] Univ Auckland, Dept Math, Auckland, New Zealand
[3] Univ Oxford, Christ Church, Oxford OX1 1DP, England
关键词
D O I
10.1016/j.jalgebra.2003.11.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that there are 3p(2) + 39p + 344 + 24 gcd(p - 1, 3) + 11 gcd(p - 1, 4) + 2 gcd(p - 1, 5) isomorphism types of groups and nilpotent Lie rings with order p(6) for every prime p greater than or equal to 5. We establish the result, and power-commutator presentations for the groups, in various ways. The most novel method constructs product presentations for nilpotent Lie rings with order p(6) and then uses the Baker-Campbell-Hausdorff formula to construct power-commutator presentations for the corresponding groups. Public access to the group presentations is provided via a database distributed with computer algebra systems. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:383 / 401
页数:19
相关论文
共 34 条
[1]  
BAGNERA G, 1898, ANN MAT PUR APPL, V1, P137
[2]  
Bahturin Yu.A., 1987, IDENTICAL RELATIONS
[3]  
BALDWIN D, 1987, THESIS AUSTR NATL U
[4]  
Bender H. A., 1927, Ann. of Math. (2), V29, P61
[5]   A millennium project: Constructing small groups [J].
Besche, HU ;
Eick, B ;
O'Brien, EA .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2002, 12 (05) :623-644
[6]   ON A SPECIAL CLASS OF P-GROUPS [J].
BLACKBURN, N .
ACTA MATHEMATICA, 1958, 100 (1-2) :45-92
[7]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[8]  
BOURBAKI N., 1998, Elements of Mathematics
[9]  
BRAHANA HR, 1958, ILLINOS J MATH, V2, P641
[10]  
Burnside W., 1911, Theory of groups of finite order