A Compact Model for Si-Ge Avalanche Photodiodes Over a Wide Range of Multiplication Gain

被引:30
作者
Wang, Binhao [1 ]
Huang, Zhihong [1 ]
Zeng, Xiaoge [1 ]
Sorin, Wayne V. [1 ]
Liang, Di [1 ]
Fiorentino, Marco [1 ]
Beausoleil, Raymond G. [1 ]
机构
[1] Hewlett Packard Enterprise, Hewlett Packard Labs, Palo Alto, CA 94304 USA
关键词
Avalanche photodiodes; optical communications; optical interconnects; EQUIVALENT-CIRCUIT MODEL; BANDWIDTH-ENHANCEMENT; SEPARATE ABSORPTION; FREQUENCY-RESPONSE; TIME;
D O I
10.1109/JLT.2019.2913179
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Silicon-germanium (Si-Ge) avalanche photodiodes (APDs) have superior gain bandwidth product due to the low impact ionization ratio of silicon. To enable efficient optical transceiver systems, cosimulation environments are essential for optimization of optical devices and transceiver circuitry. A compact Si-Ge APD circuit model, which captures both electrical and optical dynamics over a wide range of multiplication gain, is presented. This model includes effects of carrier transit time, avalanche buildup time and electrical parasitics. Model parameters are extracted by small-signal measurement and impulse response measurement where three gain regimes are discussed corresponding to the different mechanisms of carrier transit time and electrical parasitics. Simulated and measured bandwidth versus gain have a good agreement for APD multiplication gains from M = 1 to M = 17. Excellent matching between simulated and measured 25 Gb/s eye diagrams at M = 2 and M = 5.9 is achieved.
引用
收藏
页码:3229 / 3235
页数:7
相关论文
共 23 条
[1]  
Campbell J. C., 2016, J LIGHTW TECHNOL, V34, P12
[2]  
Chia P, 2017, POLIT ASIA, P17
[3]  
Chrostowski L, 2015, SILICON PHOTONICS DESIGN, P1
[4]   Derivation of the Small Signal Response and Equivalent Circuit Model for a Separate Absorption and Multiplication Layer Avalanche Photodetector [J].
Dai, Daoxin ;
Rodwell, Mark J. W. ;
Bowers, John E. ;
Kang, Yimin ;
Morse, Mike .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2010, 16 (05) :1328-1336
[5]  
Dai DC, 2009, CIBCB: 2009 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, P1
[6]   AVALANCHE BUILDUP TIME OF AN INP/INGAASP/INGAAS APD AT HIGH-GAIN [J].
HSIEH, HC ;
SARGEANT, W .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1989, 25 (09) :2027-2035
[7]   25 Gbps low-voltage waveguide Si-Ge avalanche photodiode [J].
Huang, Zhihong ;
Li, Cheng ;
Liang, Di ;
Yu, Kunzhi ;
Santori, Charles ;
Fiorentino, Marco ;
Sorin, Wayne ;
Palermo, Samuel ;
Beausoleil, Raymond G. .
OPTICA, 2016, 3 (08) :793-798
[8]   Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product [J].
Kang, Yimin ;
Liu, Han-Din ;
Morse, Mike ;
Paniccia, Mario J. ;
Zadka, Moshe ;
Litski, Stas ;
Sarid, Gadi ;
Pauchard, Alexandre ;
Kuo, Ying-Hao ;
Chen, Hui-Wen ;
Zaoui, Wissem Sfar ;
Bowers, John E. ;
Beling, Andreas ;
McIntosh, Dion C. ;
Zheng, Xiaoguang ;
Campbell, Joe C. .
NATURE PHOTONICS, 2009, 3 (01) :59-63
[9]   Enhanced frequency response associated with negative photoconductance in an InGaAs/InAlAs avalanche photodetector [J].
Kim, G ;
Kim, IG ;
Baek, JH ;
Kwon, OK .
APPLIED PHYSICS LETTERS, 2003, 83 (06) :1249-1251
[10]   Equivalent circuit model for Si avalanche photodetectors fabricated in standard CMOS process [J].
Lee, Myung-Jae ;
Kang, Hyo-Soon ;
Choi, Woo-Young .
IEEE ELECTRON DEVICE LETTERS, 2008, 29 (10) :1115-1117