Hyperspectral Image Denoising With a Spatial-Spectral View Fusion Strategy

被引:55
|
作者
Yuan, Qiangqiang [1 ]
Zhang, Liangpei [2 ]
Shen, Huanfeng [3 ]
机构
[1] Wuhan Univ, Sch Geodesy & Geomat, Wuhan 430079, Peoples R China
[2] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Peoples R China
[3] Wuhan Univ, Sch Resource & Environm Sci, Wuhan 430079, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2014年 / 52卷 / 05期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Hyperspectral image denoising; spatial view; spectral view; total variation; SIGNAL-DEPENDENT NOISE; ANISOTROPIC DIFFUSION; REDUCTION; REGULARIZATION; REMOVAL; MODEL;
D O I
10.1109/TGRS.2013.2259245
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In this paper, we propose a hyperspectral image denoising algorithm with a spatial-spectral view fusion strategy. The idea is to denoise a noisy hyperspectral 3-D cube using the hyperspectral total variation algorithm, but applied to both the spatial and spectral views. A metric Q-weighted fusion algorithm is then adopted to merge the denoising results of the two views together, so that the denoising result is improved. A number of experiments illustrate that the proposed approach can produce a better denoising result than both the individual spatial and spectral view denoising results.
引用
收藏
页码:2314 / 2325
页数:12
相关论文
共 50 条
  • [1] Spatial-Spectral Transformer for Hyperspectral Image Denoising
    Li, Miaoyu
    Fu, Ying
    Zhang, Yulun
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 1, 2023, : 1368 - 1376
  • [2] Nonlocal Spatial-Spectral Neural Network for Hyperspectral Image Denoising
    Fu, Guanyiman
    Xiong, Fengchao
    Lu, Jianfeng
    Zhou, Jun
    Qian, Yuntao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [3] Deep Spatial-Spectral Representation Learning for Hyperspectral Image Denoising
    Dong, Weisheng
    Wang, Huan
    Wu, Fangfang
    Shi, Guangming
    Li, Xin
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2019, 5 (04) : 635 - 648
  • [4] Adaptive Spatial-Spectral Dictionary Learning for Hyperspectral Image Denoising
    Fu, Ying
    Lam, Antony
    Sato, Imari
    Sato, Yoichi
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 343 - 351
  • [5] Hyperspectral Image Denoising via Spatial-Spectral Recurrent Transformer
    Fu, Guanyiman
    Xiong, Fengchao
    Lu, Jianfeng
    Zhou, Jun
    Zhou, Jiantao
    Qian, Yuntao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 14
  • [6] SSCDN: a spatial-spectral collaborative network for hyperspectral image denoising
    Li, Kaixiang
    Li, Renjian
    Li, Guiye
    Liu, Shaojun
    He, Zhengdi
    Zhang, Meng
    Chen, Lingling
    OPTICS EXPRESS, 2024, 32 (19): : 32612 - 32628
  • [7] A Neural Network for Hyperspectral Image Denoising by Combining Spatial-Spectral Information
    Lian, Xiaoying
    Yin, Zhonghai
    Zhao, Siwei
    Li, Dandan
    Lv, Shuai
    Pang, Boyu
    Sun, Dexin
    REMOTE SENSING, 2023, 15 (21)
  • [8] Spatial-spectral weighted nuclear norm minimization for hyperspectral image denoising
    Huang, Xinjian
    Du, Bo
    Tao, Dapeng
    Zhang, Liangpei
    NEUROCOMPUTING, 2020, 399 : 271 - 284
  • [9] Multiscale-Sparse Spatial-Spectral Transformer for Hyperspectral Image Denoising
    Xiao, Zilong
    Qin, Hanlin
    Yang, Shuowen
    Yan, Xiang
    Zhou, Huixin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [10] Deep Spatial-Spectral Global Reasoning Network for Hyperspectral Image Denoising
    Cao, Xiangyong
    Fu, Xueyang
    Xu, Chen
    Meng, Deyu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60