OPTIMALITY OF THRESHOLD STOPPING TIMES FOR DIFFUSION PROCESSES

被引:0
|
作者
Arkin, V., I [1 ]
机构
[1] Russian Acad Sci, Cent Econ & Math Inst, Moscow, Russia
关键词
diffusion processes; optimal stopping; threshold stopping time; free-boundary problem; STRATEGIES;
D O I
10.1137/S0040585X97T989994
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper is concerned with the optimal stopping problem for Ito diffusion processes over a class of stopping times. Necessary and sufficient optimality conditions are studied for a parametrically specified class of stopping times. A detailed analysis is given for the case of one-dimensional diffusion processes and threshold stopping times. Necessary and sufficient conditions are put forward for optimality of a threshold stopping time over all stopping times. A number of relations are obtained between the solution of the optimal stopping problem over the class of threshold moments and the solution of the free-boundary problem.
引用
收藏
页码:341 / 358
页数:18
相关论文
共 50 条
  • [21] Optimal Stopping with Gaussian Processes
    Dwarakanath, Kshama
    Dervovic, Danial
    Tavallali, Peyman
    Vyetrenko, Svitlana S.
    Balch, Tucker
    3RD ACM INTERNATIONAL CONFERENCE ON AI IN FINANCE, ICAIF 2022, 2022, : 497 - 505
  • [22] A linear threshold model for optimal stopping behavior
    Baumann, Christiane
    Singmann, Henrik
    Gershman, Samuel J.
    von Helversen, Bettina
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (23) : 12750 - 12755
  • [23] An optimal stopping problem in a diffusion-type model with delay
    Gapeev, PV
    Reiss, M
    STATISTICS & PROBABILITY LETTERS, 2006, 76 (06) : 601 - 608
  • [24] Optimal stopping and the sufficiency of randomized threshold strategies
    Henderson, Vicky
    Hobson, David
    Zeng, Matthew
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2018, 23
  • [25] Tracking Stopping Times Through Noisy Observations
    Niesen, Urs
    Tchamkerten, Aslan
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (01) : 422 - 432
  • [26] Exact simulation of first exit times for one-dimensional diffusion processes
    Herrmann, Samuel
    Zucca, Cristina
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2020, 54 (03): : 811 - 844
  • [27] Control and stopping of a diffusion process on an interval
    Karatzas, I
    Sudderth, WD
    ANNALS OF APPLIED PROBABILITY, 1999, 9 (01) : 188 - 196
  • [28] Optimal stopping games for Markov processes
    Ekstroem, Erik
    Peskir, Goran
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2008, 47 (02) : 684 - 702
  • [29] Metastability in reversible diffusion processes - I. Sharp asymptotics for capacities and exit times
    Bovier, A
    Eckhoff, M
    Gayrard, V
    Klein, M
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2004, 6 (04) : 399 - 424
  • [30] Distributions of stopping times in some sequential estimation procedures
    Jokiel-Rokita, Alicja
    Magiera, Ryszard
    METRIKA, 2014, 77 (05) : 617 - 634