A Hybrid Feature Selection Mechanism

被引:1
作者
Hsu, Hui-Huang [1 ]
Hsieh, Cheng-Wei [1 ]
Lu, Ming-Da [1 ]
机构
[1] Tamkang Univ, Dept Comp Sci & Informat Engn, Taipei, Taiwan
来源
ISDA 2008: EIGHTH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, VOL 2, PROCEEDINGS | 2008年
关键词
Feature Selection; Filter; Wrapper; Support Vector Machine; Protein Disordered Region Prediction;
D O I
10.1109/ISDA.2008.280
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper uses the SVM to predict the protein disordered region. Nevertheless, the number of features used in this paper is 440. Both time and space complexity is high while performing the support vector machine (SVM) training and testing. So this paper proposes a hybrid feature selection mechanism to reduce the dimensionality of the feature space. The filter and wrapper feature selection methods are combined to improve the SVM predictability and decrease the processing time. First, two filters are used to screen out redundant features. The resulted feature subsets are then combined for the wrapper method to do final fine tuning. The results demonstrate the usefulness of this hybrid mechanism.
引用
收藏
页码:271 / 276
页数:6
相关论文
共 11 条
[1]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[2]  
BACKSTROM L, 2006, NEURAL NETWORKS, P4748
[3]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[4]  
DEISY C, 2007, INT C COMP INT MULT, V2, P121
[5]   Gene selection for cancer classification using support vector machines [J].
Guyon, I ;
Weston, J ;
Barnhill, S ;
Vapnik, V .
MACHINE LEARNING, 2002, 46 (1-3) :389-422
[6]  
HUANG JJ, 2006, COGNITIVE INFORM, V1, P84
[7]   Wrappers for feature subset selection [J].
Kohavi, R ;
John, GH .
ARTIFICIAL INTELLIGENCE, 1997, 97 (1-2) :273-324
[8]   Protein disorder prediction: Implications for structural proteomics [J].
Linding, R ;
Jensen, LJ ;
Diella, F ;
Bork, P ;
Gibson, TJ ;
Russell, RB .
STRUCTURE, 2003, 11 (11) :1453-1459
[9]   FLOATING SEARCH METHODS IN FEATURE-SELECTION [J].
PUDIL, P ;
NOVOVICOVA, J ;
KITTLER, J .
PATTERN RECOGNITION LETTERS, 1994, 15 (11) :1119-1125
[10]  
Quinlan J. R., 1979, Expert Systems in the Micro-Electronic Age. Proceedings of the 1979 AISB Summer School, P168