Twitter sentiment mining: A multi domain analysis

被引:9
作者
Shahheidari, Saeideh [1 ]
Dong, Hai [2 ]
Bin Daud, Md Nor Ridzuan [3 ]
机构
[1] Univ Malaya, Dept Informat Syst, Kuala Lumpur, Malaysia
[2] Curtin Univ Technol, Sch Informat Syst, Perth, WA, Australia
[3] Univ Malaya, Dept Artificial Intelligence, Kuala Lumpur, Malaysia
来源
2013 SEVENTH INTERNATIONAL CONFERENCE ON COMPLEX, INTELLIGENT, AND SOFTWARE INTENSIVE SYSTEMS (CISIS) | 2013年
关键词
Opinion mining; sentiment analysis; text mining; classifier; social media;
D O I
10.1109/CISIS.2013.31
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Microblogging such as Twitter provides a rich source of information about products, personalities, and trends, etc. We proposed a simple methodology for analyzing sentiment of users in Twitter. First, we automatically collected Twitter corpus in positive and negative tweets. Second, we built a simple sentiment classifier by utilizing the Naive Bayes model to determine the positive and negative sentiment of a tweet. Third, we tested the classifier against a collection of users' opinions from five interesting domains of Twitter, i.e., news, finance, job, movies, and sport. The experimental results show that it is feasible to use Twitter corpus alone to classify new tweet for a certain domain applications.
引用
收藏
页码:144 / 149
页数:6
相关论文
共 50 条
[41]   Opinion Mining and Sentiment Analysis [J].
Bakshi, Rushlow Kaur ;
Kaur, Navneet ;
Kaur, Ravneet ;
Kaur, Gurpreet .
PROCEEDINGS OF THE 10TH INDIACOM - 2016 3RD INTERNATIONAL CONFERENCE ON COMPUTING FOR SUSTAINABLE GLOBAL DEVELOPMENT, 2016, :452-455
[42]   Detecting Public Sentiment of Medicine by Mining Twitter Data [J].
Kuroshima, Daisuke ;
Tian, Tina .
INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (10) :1-5
[43]   On Modelling for Bias-Aware Sentiment Analysis and Its Impact in Twitter [J].
Mahmood, Ahsan ;
Khan, Hikmat Ullah ;
Ramzan, Muhammad .
JOURNAL OF WEB ENGINEERING, 2020, 19 (01) :1-27
[44]   Twitter, My Space, Digg: Unsupervised Sentiment Analysis in Social Media [J].
Paltoglou, Georgios ;
Thelwall, Mike .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2012, 3 (04)
[45]   A SURVEY OF TWITTER SENTIMENT ANALYSIS [J].
Anuprathibha, T. ;
Selvib, C. S. Kanimozhi .
IIOAB JOURNAL, 2016, 7 (09) :374-378
[46]   Detecting public sentiment of medicine by mining twitter data [J].
Kuroshima D. ;
Tian T. .
International Journal of Advanced Computer Science and Applications, 2019, 10 (10) :1-5
[47]   Migrants vs. stayers in the pandemic - A sentiment analysis of Twitter content [J].
Czeranowska, Olga ;
Chlasta, Karol ;
Milkowski, Piotr ;
Grabowska, Izabela ;
Kocon, Jan ;
Hwaszcz, Krzysztof ;
Wieczorek, Jan ;
Jastrzebowska, Agata .
TELEMATICS AND INFORMATICS REPORTS, 2023, 10
[48]   Sentiment Analysis of Twitter Data [J].
Wang, Yili ;
Guo, Jiaxuan ;
Yuan, Chengsheng ;
Li, Baozhu .
APPLIED SCIENCES-BASEL, 2022, 12 (22)
[49]   Multi-Class Sentiment Analysis on Twitter: Classification Performance and Challenges [J].
Bouazizi, Mondher ;
Ohtsuki, Tomoaki .
BIG DATA MINING AND ANALYTICS, 2019, 2 (03) :181-194
[50]   Multi-Class Sentiment Analysis on Twitter: Classification Performance and Challenges [J].
Mondher Bouazizi ;
Tomoaki Ohtsuki .
Big Data Mining and Analytics, 2019, 2 (03) :181-194