Twitter sentiment mining: A multi domain analysis

被引:9
作者
Shahheidari, Saeideh [1 ]
Dong, Hai [2 ]
Bin Daud, Md Nor Ridzuan [3 ]
机构
[1] Univ Malaya, Dept Informat Syst, Kuala Lumpur, Malaysia
[2] Curtin Univ Technol, Sch Informat Syst, Perth, WA, Australia
[3] Univ Malaya, Dept Artificial Intelligence, Kuala Lumpur, Malaysia
来源
2013 SEVENTH INTERNATIONAL CONFERENCE ON COMPLEX, INTELLIGENT, AND SOFTWARE INTENSIVE SYSTEMS (CISIS) | 2013年
关键词
Opinion mining; sentiment analysis; text mining; classifier; social media;
D O I
10.1109/CISIS.2013.31
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Microblogging such as Twitter provides a rich source of information about products, personalities, and trends, etc. We proposed a simple methodology for analyzing sentiment of users in Twitter. First, we automatically collected Twitter corpus in positive and negative tweets. Second, we built a simple sentiment classifier by utilizing the Naive Bayes model to determine the positive and negative sentiment of a tweet. Third, we tested the classifier against a collection of users' opinions from five interesting domains of Twitter, i.e., news, finance, job, movies, and sport. The experimental results show that it is feasible to use Twitter corpus alone to classify new tweet for a certain domain applications.
引用
收藏
页码:144 / 149
页数:6
相关论文
共 50 条
[31]   Twitter Sentiment Analysis Approaches: A Survey [J].
Adwan, Omar Y. ;
Al-Tawil, Marwan ;
Huneiti, Ammar M. ;
Shahin, Rawan A. ;
Abu Zayed, Abeer A. ;
Al-Dibsi, Razan H. .
INTERNATIONAL JOURNAL OF EMERGING TECHNOLOGIES IN LEARNING, 2020, 15 (15) :79-93
[32]   Sentiment Analysis of Hollywood Movies on Twitter [J].
Hodeghatta, Umesh Rao .
2013 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM), 2013, :1401-1404
[33]   Benchmarking Twitter Sentiment Analysis Tools [J].
Abbasi, Ahmed ;
Hassan, Ammar ;
Dhar, Milan .
LREC 2014 - NINTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2014, :823-829
[34]   Modeling and Mining Domain Shared Knowledge for Sentiment Analysis [J].
Zhou, Guang-You ;
Huang, Jimmy Xiangji .
ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2017, 36 (02)
[35]   Twitter Sentiment Analysis Using Multi-Class SVM [J].
Lavanya, K. ;
Deisy, C. .
PROCEEDINGS OF 2017 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL (I2C2), 2017,
[36]   Sentiment mapping: point pattern analysis of sentiment classified Twitter data [J].
Camacho, Ken ;
Portelli, Raechel ;
Shortridge, Ashton ;
Takahashi, Bruno .
CARTOGRAPHY AND GEOGRAPHIC INFORMATION SCIENCE, 2021, 48 (03) :241-257
[37]   Sentiment Analysis for Mining Customer Opinion on Twitter: A Case Study of Ride-Hailing Service Provider [J].
Zulkarnain ;
Surjandari, Isti ;
Wayasti, Reggia Aldiana .
2018 5TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CONTROL ENGINEERING (ICISCE 2018), 2018, :512-516
[38]   Like It or Not: A Survey of Twitter Sentiment Analysis Methods [J].
Giachanou, Anastasia ;
Crestani, Fabio .
ACM COMPUTING SURVEYS, 2016, 49 (02)
[39]   Hybrid CNN and RNN for Twitter Sentiment Analysis [J].
Pujari, Pratik ;
Padalia, Adish ;
Shah, Tanish ;
Devadkar, Kailas .
SMART TRENDS IN COMPUTING AND COMMUNICATIONS, VOL 3, SMARTCOM 2024, 2024, 947 :297-310
[40]   Twitter Ontology-Driven Sentiment Analysis [J].
Cotfas, Liviu-Adrian ;
Delcea, Camelia ;
Roxin, Ioan ;
Paun, Ramona .
NEW TRENDS IN INTELLIGENT INFORMATION AND DATABASE SYSTEMS, 2015, 598 :131-139