Twitter sentiment mining: A multi domain analysis

被引:9
作者
Shahheidari, Saeideh [1 ]
Dong, Hai [2 ]
Bin Daud, Md Nor Ridzuan [3 ]
机构
[1] Univ Malaya, Dept Informat Syst, Kuala Lumpur, Malaysia
[2] Curtin Univ Technol, Sch Informat Syst, Perth, WA, Australia
[3] Univ Malaya, Dept Artificial Intelligence, Kuala Lumpur, Malaysia
来源
2013 SEVENTH INTERNATIONAL CONFERENCE ON COMPLEX, INTELLIGENT, AND SOFTWARE INTENSIVE SYSTEMS (CISIS) | 2013年
关键词
Opinion mining; sentiment analysis; text mining; classifier; social media;
D O I
10.1109/CISIS.2013.31
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Microblogging such as Twitter provides a rich source of information about products, personalities, and trends, etc. We proposed a simple methodology for analyzing sentiment of users in Twitter. First, we automatically collected Twitter corpus in positive and negative tweets. Second, we built a simple sentiment classifier by utilizing the Naive Bayes model to determine the positive and negative sentiment of a tweet. Third, we tested the classifier against a collection of users' opinions from five interesting domains of Twitter, i.e., news, finance, job, movies, and sport. The experimental results show that it is feasible to use Twitter corpus alone to classify new tweet for a certain domain applications.
引用
收藏
页码:144 / 149
页数:6
相关论文
共 50 条
[21]   Sentiment analysis and topic extraction of the twitter network of #prayforparis [J].
Chong M. .
Proceedings of the Association for Information Science and Technology, 2016, 53 (01) :1-4
[22]   Sentiment Analysis on Automobile Brands Using Twitter Data [J].
Asghar, Zain ;
Ali, Tahir ;
Ahmad, Imran ;
Tharanidharan, Sridevi ;
Nazar, Shamim Kamal Abdul ;
Kamal, Shahid .
INTELLIGENT TECHNOLOGIES AND APPLICATIONS, INTAP 2018, 2019, 932 :76-85
[23]   HiSAT: Hierarchical Framework for Sentiment Analysis on Twitter Data [J].
Kommu, Amrutha ;
Patel, Snehal ;
Derosa, Sebastian ;
Wang, Jiayin ;
Varde, Aparna S. .
INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 1, 2023, 542 :376-392
[24]   Sentiment Analysis on Twitter [J].
Meral, Meric ;
Diri, Banu .
2014 22ND SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2014, :690-693
[25]   Sentiment analysis with Twitter [J].
Akgul, Eyup Sercan ;
Ertano, Caner ;
Diri, Banu .
PAMUKKALE UNIVERSITY JOURNAL OF ENGINEERING SCIENCES-PAMUKKALE UNIVERSITESI MUHENDISLIK BILIMLERI DERGISI, 2016, 22 (02) :106-110
[26]   Sentiment Analysis of Turkish Twitter Data [J].
Shehu, Harisu Abdullahi ;
Tokat, Sezai ;
Sharif, Md. Haidar ;
Uyaver, Sahin .
THIRD INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2019), 2019, 2183
[27]   SENTIMENT ANALYSIS OF THE SYRIAN CONFLICT ON TWITTER [J].
Lucic, Danijela ;
Katalinic, Josip ;
Dokman, Tomislav .
MEDIJSKE STUDIJE-MEDIA STUDIES, 2020, 11 (22) :46-61
[28]   Sentiment Analysis and Summarization of Twitter Data [J].
Bahrainian, Seyed-Ali ;
Dengel, Andreas .
2013 IEEE 16TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING (CSE 2013), 2013, :227-234
[29]   Sentiment Analysis of Twitter in Tourism Destinations [J].
Perez Cabanero, Carmen ;
Bigne, Enrique ;
Ruiz, Carla ;
Carlos Cuenca, Antonio .
3RD INTERNATIONAL CONFERENCE ON ADVANCED RESEARCH METHODS AND ANALYTICS (CARMA 2020), 2020, :181-189
[30]   SASM: A Tool for Sentiment Analysis on Twitter [J].
Onifade, O. F. W. ;
Malik, M. A. .
2015 2ND WORLD SYMPOSIUM ON WEB APPLICATIONS AND NETWORKING (WSWAN), 2015,