Twitter sentiment mining: A multi domain analysis

被引:8
作者
Shahheidari, Saeideh [1 ]
Dong, Hai [2 ]
Bin Daud, Md Nor Ridzuan [3 ]
机构
[1] Univ Malaya, Dept Informat Syst, Kuala Lumpur, Malaysia
[2] Curtin Univ Technol, Sch Informat Syst, Perth, WA, Australia
[3] Univ Malaya, Dept Artificial Intelligence, Kuala Lumpur, Malaysia
来源
2013 SEVENTH INTERNATIONAL CONFERENCE ON COMPLEX, INTELLIGENT, AND SOFTWARE INTENSIVE SYSTEMS (CISIS) | 2013年
关键词
Opinion mining; sentiment analysis; text mining; classifier; social media;
D O I
10.1109/CISIS.2013.31
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Microblogging such as Twitter provides a rich source of information about products, personalities, and trends, etc. We proposed a simple methodology for analyzing sentiment of users in Twitter. First, we automatically collected Twitter corpus in positive and negative tweets. Second, we built a simple sentiment classifier by utilizing the Naive Bayes model to determine the positive and negative sentiment of a tweet. Third, we tested the classifier against a collection of users' opinions from five interesting domains of Twitter, i.e., news, finance, job, movies, and sport. The experimental results show that it is feasible to use Twitter corpus alone to classify new tweet for a certain domain applications.
引用
收藏
页码:144 / 149
页数:6
相关论文
共 50 条
  • [21] HiSAT: Hierarchical Framework for Sentiment Analysis on Twitter Data
    Kommu, Amrutha
    Patel, Snehal
    Derosa, Sebastian
    Wang, Jiayin
    Varde, Aparna S.
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 1, 2023, 542 : 376 - 392
  • [22] Sentiment Analysis on Automobile Brands Using Twitter Data
    Asghar, Zain
    Ali, Tahir
    Ahmad, Imran
    Tharanidharan, Sridevi
    Nazar, Shamim Kamal Abdul
    Kamal, Shahid
    INTELLIGENT TECHNOLOGIES AND APPLICATIONS, INTAP 2018, 2019, 932 : 76 - 85
  • [23] Sentiment Analysis on Twitter
    Meral, Meric
    Diri, Banu
    2014 22ND SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2014, : 690 - 693
  • [24] Sentiment Analysis and Summarization of Twitter Data
    Bahrainian, Seyed-Ali
    Dengel, Andreas
    2013 IEEE 16TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING (CSE 2013), 2013, : 227 - 234
  • [25] SENTIMENT ANALYSIS OF THE SYRIAN CONFLICT ON TWITTER
    Lucic, Danijela
    Katalinic, Josip
    Dokman, Tomislav
    MEDIJSKE STUDIJE-MEDIA STUDIES, 2020, 11 (22): : 46 - 61
  • [26] Sentiment Analysis of Turkish Twitter Data
    Shehu, Harisu Abdullahi
    Tokat, Sezai
    Sharif, Md. Haidar
    Uyaver, Sahin
    THIRD INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2019), 2019, 2183
  • [27] Sentiment Analysis of Twitter in Tourism Destinations
    Perez Cabanero, Carmen
    Bigne, Enrique
    Ruiz, Carla
    Carlos Cuenca, Antonio
    3RD INTERNATIONAL CONFERENCE ON ADVANCED RESEARCH METHODS AND ANALYTICS (CARMA 2020), 2020, : 181 - 189
  • [28] SASM: A Tool for Sentiment Analysis on Twitter
    Onifade, O. F. W.
    Malik, M. A.
    2015 2ND WORLD SYMPOSIUM ON WEB APPLICATIONS AND NETWORKING (WSWAN), 2015,
  • [29] Sentiment analysis with Twitter
    Akgul, Eyup Sercan
    Ertano, Caner
    Diri, Banu
    PAMUKKALE UNIVERSITY JOURNAL OF ENGINEERING SCIENCES-PAMUKKALE UNIVERSITESI MUHENDISLIK BILIMLERI DERGISI, 2016, 22 (02): : 106 - 110
  • [30] Twitter Sentiment Analysis Approaches: A Survey
    Adwan, Omar Y.
    Al-Tawil, Marwan
    Huneiti, Ammar M.
    Shahin, Rawan A.
    Abu Zayed, Abeer A.
    Al-Dibsi, Razan H.
    INTERNATIONAL JOURNAL OF EMERGING TECHNOLOGIES IN LEARNING, 2020, 15 (15) : 79 - 93