Twitter sentiment mining: A multi domain analysis

被引:8
|
作者
Shahheidari, Saeideh [1 ]
Dong, Hai [2 ]
Bin Daud, Md Nor Ridzuan [3 ]
机构
[1] Univ Malaya, Dept Informat Syst, Kuala Lumpur, Malaysia
[2] Curtin Univ Technol, Sch Informat Syst, Perth, WA, Australia
[3] Univ Malaya, Dept Artificial Intelligence, Kuala Lumpur, Malaysia
来源
2013 SEVENTH INTERNATIONAL CONFERENCE ON COMPLEX, INTELLIGENT, AND SOFTWARE INTENSIVE SYSTEMS (CISIS) | 2013年
关键词
Opinion mining; sentiment analysis; text mining; classifier; social media;
D O I
10.1109/CISIS.2013.31
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Microblogging such as Twitter provides a rich source of information about products, personalities, and trends, etc. We proposed a simple methodology for analyzing sentiment of users in Twitter. First, we automatically collected Twitter corpus in positive and negative tweets. Second, we built a simple sentiment classifier by utilizing the Naive Bayes model to determine the positive and negative sentiment of a tweet. Third, we tested the classifier against a collection of users' opinions from five interesting domains of Twitter, i.e., news, finance, job, movies, and sport. The experimental results show that it is feasible to use Twitter corpus alone to classify new tweet for a certain domain applications.
引用
收藏
页码:144 / 149
页数:6
相关论文
共 50 条
  • [1] Opinion Mining System for Twitter Sentiment Analysis
    Aquino, Pamella A.
    Lopez, Vivian F.
    Moreno, Maria N.
    Munoz, Maria D.
    Rodriguez, Sara
    HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, HAIS 2020, 2020, 12344 : 465 - 476
  • [2] Sentiment analysis on Twitter: A text mining approach to the Syrian refugee crisis
    Ozturk, Nazan
    Ayvaz, Serkan
    TELEMATICS AND INFORMATICS, 2018, 35 (01) : 136 - 147
  • [3] Twitter Mining in the Oil Business: A Sentiment Analysis Approach
    Aldahawi, Hanaa A.
    Allen, Stuart M.
    2013 IEEE THIRD INTERNATIONAL CONFERENCE ON CLOUD AND GREEN COMPUTING (CGC 2013), 2013, : 581 - 586
  • [4] Twitter Vigilance: a Multi-User platform for Cross-Domain Twitter Data Analytics, NLP and Sentiment Analysis
    Cenni, Daniele
    Nesi, Paolo
    Pantaleo, Gianni
    Zaza, Imad
    2017 IEEE SMARTWORLD, UBIQUITOUS INTELLIGENCE & COMPUTING, ADVANCED & TRUSTED COMPUTED, SCALABLE COMPUTING & COMMUNICATIONS, CLOUD & BIG DATA COMPUTING, INTERNET OF PEOPLE AND SMART CITY INNOVATION (SMARTWORLD/SCALCOM/UIC/ATC/CBDCOM/IOP/SCI), 2017,
  • [5] Integrating argumentation and sentiment analysis for mining opinions from Twitter
    Grosse, Kathrin
    Gonzalez, Maria P.
    Chesnevar, Carlos I.
    Maguitman, Ana G.
    AI COMMUNICATIONS, 2015, 28 (03) : 387 - 401
  • [6] Development of IoT Mining Machine for Twitter Sentiment Analysis: Mining in the Cloud and Results on the Mirror
    Alzahrani, Salha M.
    2018 15TH LEARNING AND TECHNOLOGY CONFERENCE (L&T), 2018, : 86 - 95
  • [7] Informal Multilingual Multi-domain Sentiment Analysis
    Stajner, Tadej
    Novalija, Inna
    Mladenic, Dunja
    INFORMATICA-JOURNAL OF COMPUTING AND INFORMATICS, 2013, 37 (04): : 373 - 380
  • [8] Sentiment Analysis on Twitter: A text Mining Approach to the Afghanistan Status Reviews
    Kamyab, Marjan
    Tao, Ran
    Mohammadi, Mohammad Hadi
    Rasool, Abdul
    AIVR 2018: 2018 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND VIRTUAL REALITY, 2018, : 10 - 15
  • [9] Mining netizen's opinion on cryptocurrency: sentiment analysis of Twitter data
    Hassan, M. Kabir
    Hudaefi, Fahmi Ali
    Caraka, Rezzy Eko
    STUDIES IN ECONOMICS AND FINANCE, 2022, 39 (03) : 365 - 385
  • [10] Network-based Visualization of Opinion Mining and Sentiment Analysis on Twitter
    Molla, Alemu
    Biadgie, Yenewondim
    Sohn, Kyung-Ah
    2014 INTERNATIONAL CONFERENCE ON IT CONVERGENCE AND SECURITY (ICITCS), 2014,