Upper bounds for binary identifying codes

被引:6
作者
Exoo, Geoffrey [3 ]
Junnila, Ville [2 ]
Laihonen, Tero [1 ]
Ranto, Sanna [1 ]
机构
[1] Univ Turku, Dept Math, Turku 20014, Finland
[2] Univ Turku, Turku Ctr Comp Sci TUCS, Turku 20014, Finland
[3] Indiana State Univ, Dept Math & Comp Sci, Terre Haute, IN 47809 USA
基金
芬兰科学院;
关键词
Identifying codes; Hamming space; Locating-dominating codes; Direct sum; VERTICES; GRAPHS; SETS;
D O I
10.1016/j.aam.2008.06.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A nonempty set of words in a binary Hamming space F-n is called an r-identifying code if for every word the set of codewords within distance r from it is unique and nonempty. The smallest possible cardinality of an r-identifying code is denoted by M-r(n). In this paper, we consider questions closely related to the open problem whether Mt+r(n + m) <= M-t(m)M-r(n) is true. For example, we show results like M1+r(n + m) <= 4M(1)(m)M-r(n), which improve previously known bounds. We also consider codes which identify sets of words of size at most l. The smallest cardinality of such a code is denoted by M-r((<= l)) (n). we prove that M-r+1((<= l)) (n + m) <= M-r((<= l)) (n)M-t((<= l)) (m) is true for all l >= r + 3 when r >= 1 and t = 1. We also obtain a result M-1 (n + 1) <= (2 + epsilon(n))M-1(n) where epsilon(n) -> 0 when n -> infinity. This bound is related to the conjecture M-1 (n + 1) <= 2M(1) (n). Moreover. we give constructions for the best known 1-identifying codes of certain lengths. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:277 / 289
页数:13
相关论文
共 50 条
[31]   Coordinate-Ordering-Free Upper Bounds for Linear Insertion-Deletion Codes [J].
Chen, Hao .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (08) :5126-5132
[32]   Partial linear spaces and identifying codes [J].
Araujo-Pardo, G. ;
Balbuena, C. ;
Montejano, L. ;
Valenzuela, J. C. .
EUROPEAN JOURNAL OF COMBINATORICS, 2011, 32 (03) :344-351
[33]   Minimum density of identifying codes of king grids [J].
Dantas, Rennan ;
Havet, Frederic ;
Sampaio, Rudini M. .
DISCRETE MATHEMATICS, 2018, 341 (10) :2708-2719
[34]   On upper bounds for the independent transversal domination number [J].
Brause, Christoph ;
Henning, Michael A. ;
Ozeki, Kenta ;
Schiermeyer, Ingo ;
Vumar, Elkin .
DISCRETE APPLIED MATHEMATICS, 2018, 236 :66-72
[35]   DISCRIMINATING CODES IN BIPARTITE GRAPHS: BOUNDS, EXTREMAL CARDINALITIES, COMPLEXITY [J].
Charbit, Emmanuel ;
Charon, Irene ;
Cohen, Gerard ;
Hudry, Olivier ;
Lobstein, Antoine .
ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2008, 2 (04) :403-420
[36]   Identifying Codes in the Direct Product of a Path and a Complete Graph [J].
Shinde, N. V. ;
Mane, S. A. ;
Waphare, B. N. .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2023, 43 (02) :463-486
[37]   Minimum identifying codes in some graphs differing by matchings [J].
Nikandish, R. ;
Nasab, O. Khani ;
Dodonge, E. .
DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2020, 12 (03)
[38]   On the size of identifying codes in triangle-free graphs [J].
Foucaud, Florent ;
Klasing, Ralf ;
Kosowski, Adrian ;
Raspaud, Andre .
DISCRETE APPLIED MATHEMATICS, 2012, 160 (10-11) :1532-1546
[39]   Optimal identifying codes of two families of Cayley graphs [J].
Feng, Min ;
Ma, Xuanlong ;
Feng, Lihua .
DISCRETE APPLIED MATHEMATICS, 2022, 320 :199-210
[40]   Identifying codes in bipartite graphs of given maximum degree [J].
Chakraborty, Dipayan ;
Foucaud, Florent ;
Lehtila, Tuomo .
XII LATIN-AMERICAN ALGORITHMS, GRAPHS AND OPTIMIZATION SYMPOSIUM, LAGOS 2023, 2023, 224 :157-165