Dynamics of a discrete Lotka-Volterra model

被引:50
作者
Din, Qamar [1 ]
机构
[1] Univ Azad Jammu & Kasmir, Muzaffarabad, Pakistan
关键词
difference equations; equilibrium points; local stability; global character; DIFFERENCE; SYSTEMS;
D O I
10.1186/1687-1847-2013-95
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the equilibrium points, local asymptotic stability of equilibrium points, and global behavior of equilibrium points of a discrete Lotka-Volterra model given by Xn+1 = alpha X-n - beta XnYn/1 + gamma X-n, y(n+1) = delta y(n) + epsilon X(n)y(n)/1 + eta y(n), where parameters alpha, beta, gamma, delta, epsilon, eta is an element of R+, and initial conditions x(0), y(0) are positive real numbers. Moreover, the rate of convergence of a solution that converges to the unique positive equilibrium point is discussed. Some numerical examples are given to verify our theoretical results.
引用
收藏
页数:13
相关论文
共 28 条
[1]  
Agarwal R.P., 1997, Advanced Topics in Difference Equations
[2]  
Agarwal Ravil P, 2000, DIFFERENCE EQUATIONS
[4]  
Allen L., 2007, An Introduction to Mathematical Biology
[5]   Dynamics of a rational difference equation [J].
Aloqeili, M .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 176 (02) :768-774
[6]   Global behaviour of a second-order nonlinear difference equation [J].
Bajo, Ignacio ;
Liz, Eduardo .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2011, 17 (10) :1471-1486
[7]  
Brauer F., 2000, Mathematical Models in Population Biology and Epidemiology
[8]  
Camouzis E., 2007, DYNAMICS 3 ORDER RAT
[9]   On the positive solutions of the difference equation system Xn+1=1/yn, Yn+1=Yn/xn-1Yn-1 [J].
Çinar, C .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 158 (02) :303-305
[10]   Dynamics of a fourth-order system of rational difference equations [J].
Din, Q. ;
Qureshi, M. N. ;
Khan, A. Qadeer .
ADVANCES IN DIFFERENCE EQUATIONS, 2012,