ON THE STRUCTURE OF THE UNITARY SUBGROUP OF THE GROUP ALGEBRA F2qD2n

被引:3
|
作者
Raza, Zahid [1 ]
Ahmad, Maqsood [2 ]
机构
[1] Natl Univ Comp & Emerging Sci, Dept Math, Lahore, Pakistan
[2] COMSATS Inst Informat Technol, Dept Math, Lahore, Pakistan
关键词
Group algebra; unit group; unitary unit group; dihedral group; circulant matrices;
D O I
10.1142/S0219498813501399
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss the structure of the unitary subgroup V-*(F2qD2n) of the group algebra F2qD2n, where D-2n = < x, y vertical bar x(2n-1) = y(2) = 1, xy = yx(2n-1-1)> is the dihedral group of order 2(n) and F-2q is any finite field of characteristic 2, with 2(q) elements. We will prove that V-*(F2qD2n) congruent to C-2((3.2n-2-1)q) (sic) C-2(q), see Theorem 3.1.
引用
收藏
页数:8
相关论文
共 28 条