A quantitative version of Herstein's theorem for Jordan *-isomorphisms

被引:2
作者
Ilisevic, Dijana [1 ]
Turnsek, Aleksej [2 ,3 ]
机构
[1] Univ Zagreb, Dept Math, Zagreb 41000, Croatia
[2] Univ Ljubljana, Fac Maritime Studies & Transport, Ljubljana, Slovenia
[3] Inst Math Phys & Mech, Ljubljana, Slovenia
关键词
stability; Jordan *-isomorphism; C*-algebra; ELEMENTARY OPERATORS;
D O I
10.1080/03081087.2015.1028169
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study linear mappings between C*-algebras A and B, which approximately satisfy Jordan multiplicativity condition and a *-preserving condition (that is, the so-called e-approximate Jordan *-homomorphisms). We first prove that every such mapping is automatically continuous and we give the estimates of its norm, as well as the estimates of the norm of its inverse if it is bijective. IfK(H-1) subset of A subset of B(H-1), K(H-2) subset of B subset of B(H-2), and psi : A -> B is a bijective epsilon-approximate Jordan *-homomorphism with sufficiently small epsilon > 0, then either psi(-1) has a large norm, or psi is close to a Jordan *-isomorphism, that is, to a mapping of the form X -> UXU*, or X -> (UXU)-U-t*, for some unitary U is an element of B(H-1, H-2). We also give the corresponding quantitative estimate.
引用
收藏
页码:156 / 168
页数:13
相关论文
共 11 条
  • [1] Metric versions of Herstein's theorems on Jordan maps
    Alaminos, J.
    Extremera, J.
    Villena, A. R.
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2012, 60 (08) : 941 - 954
  • [2] [Anonymous], 2006, ENCYCL MATH SCI
  • [3] On the norm of elementary operators
    Blanco, A
    Boumazgour, M
    Ransford, TJ
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2004, 70 : 479 - 498
  • [4] Chernoff P. R., 1973, Journal of Functional Analysis, V12, P275, DOI 10.1016/0022-1236(73)90080-3
  • [5] Cho Y.J., 2013, Stability of Functional Equations in Random Normed Spaces
  • [6] Herstein IN., 1956, Trans. Am. Math. Soc, V81, P331, DOI [10.1090/S0002-9947-1956-0076751-6, DOI 10.1090/S0002-9947-1956-0076751-6]
  • [7] Kannappan P, 2009, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-0-387-89492-8_1
  • [8] An algebraic approach to Wigner's unitary-antiunitary theorem
    Molnár, L
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1998, 65 : 354 - 369
  • [9] Murphy G. J., 1990, C*-algebras and operator theory, DOI DOI 10.1016/C2009-0-22289-6
  • [10] Norms and CB norms of Jordan elementary operators
    Timoney, RM
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2003, 127 (07): : 597 - 609