Differences of cell surface marker expression between bone marrow- and kidney-derived murine mesenchymal stromal cells and fibroblasts

被引:4
作者
Cakiroglu, F. [1 ]
Osbahr, J. W. [2 ]
Kramer, J. [3 ]
Rohwedel, J. [4 ]
机构
[1] Univ Med Ctr Schleswig Holstein, Dept Nephrol, Dialysis, Transplantat, Lubeck Campus,Ratzeburger Allee 160, D-23538 Lubeck, Germany
[2] Univ Med Ctr Schleswig Holstein, Dept Cardiol, Lubeck Campus,Ratzeburger Allee 160, D-23538 Lubeck, Germany
[3] LADR Med Labs Dr Kramer Colleagues, Lauenburger Str 67, D-21502 Geesthacht, Germany
[4] Univ Lubeck, Dept Virol & Cell Biol, Ratzeburger Allee 160, Lubeck, Germany
关键词
Mesenchymal stromal cells; fibroblasts; regeneration; cell surface markers; flow cytometry; multipotent cells; cell differentiation; STEM-CELLS; IN-VITRO; DIFFERENTIATION; TISSUES; REPAIR;
D O I
10.14715/cmb/2016.62.12.3
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mesenchymal stromal cells (MSC) are undifferentiated, multipotent adult cells with regenerative properties. They are particularly relevant for therapeutic approaches due to the simplicity of their isolation and cultivation. Since MSC show an expression pattern of cell surface marker, which is almost identical to fibroblasts, many attempts have been made to address the similarities and differences between MSC and fibroblasts. In this study we aimed to isolate murine MSC from bone marrow (BM) and kidney to characterize them in comparison to fibroblasts. Cells were isolated from murine kidney, BM and abdominal skin by plastic adherence and subsequently characterized by analysing their capability to build colony-forming unit-fibroblasts (CFU-F), their morphology, their proliferation, expression of telomerase activity and cell surface antigens as well as their differentiation capacity. Plastic adherent cells from the 3 mouse tissues showed similar morphology, proliferation profiles and CFU-F building capacities. However, while MSC from BM and kidney differentiated into the adipogenic, chondrogenic and osteogenic direction, fibroblasts were not able to do so efficiently. In addition, a tendency for lower expression of telomerase was found in the fibroblast population. Proliferating cells from kidney and BM expressed the MSC-specific cell surface markers CD105 and Sca-1 on a significantly higher and CD117 on a significantly lower level compared to fibroblasts and were thereby distinguishable from fibroblasts. Furthermore, we found that certain CD markers were specifically expressed on a higher level, either in BM-derived cells or fibroblasts. This study demonstrates that murine MSC isolated from different organs express certain specific markers, which enable their discrimination.
引用
收藏
页码:11 / 17
页数:7
相关论文
共 24 条
[1]   Fibroblasts share mesenchymal phenotypes with stem cells, but lack their differentiation and colony-forming potential [J].
Alt, Eckhard ;
Yan, Yasheng ;
Gehmert, Sebastian ;
Song, Yao-Hua ;
Altman, Andrew ;
Gehmert, Sanga ;
Vykoukal, Daynene ;
Bai, Xiaowen .
BIOLOGY OF THE CELL, 2011, 103 (04) :197-208
[2]   Murine mesenchymal progenitor cells from different tissues differentiated via mesenchymal microspheres into the mesodermal direction [J].
Boehrnsen, Florian ;
Lindner, Ulrich ;
Meier, Markus ;
Gadallah, Abdelalim ;
Schlenke, Peter ;
Lehnert, Hendrik ;
Rohwedel, Juergen ;
Kramer, Jan .
BMC CELL BIOLOGY, 2009, 10
[3]   Concise review: Mesenchymal stem cells: Their phenotype, differentiation capacity, immunological features, and potential for homing [J].
Chamberlain, Giselle ;
Fox, James ;
Ashton, Brian ;
Middleton, Jim .
STEM CELLS, 2007, 25 (11) :2739-2749
[4]  
Conget PA, 1999, J CELL PHYSIOL, V181, P67, DOI 10.1002/(SICI)1097-4652(199910)181:1<67::AID-JCP7>3.0.CO
[5]  
2-C
[6]   Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts [J].
Covas, Dimas T. ;
Panepucci, Rodrigo A. ;
Fontes, Aparecida M. ;
Silva, Wilson A., Jr. ;
Orellana, Maristela D. ;
Freitas, Marcela C. C. ;
Neder, Luciano ;
Santos, Anemari R. D. ;
Peres, Luiz C. ;
Jamur, Maria C. ;
Zago, Marco A. .
EXPERIMENTAL HEMATOLOGY, 2008, 36 (05) :642-654
[7]   Mesenchymal stem cells reside in virtually all post-natal organs and tissues [J].
da Silva Meirelles, Lindolfo ;
Chagastelles, Pedro Cesar ;
Nardi, Nance Beyer .
JOURNAL OF CELL SCIENCE, 2006, 119 (11) :2204-2213
[8]   Mesenchymal stem cells: Biology and potential clinical uses [J].
Deans, RJ ;
Moseley, AB .
EXPERIMENTAL HEMATOLOGY, 2000, 28 (08) :875-884
[9]   Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement [J].
Dominici, M. ;
Le Blanc, K. ;
Mueller, I. ;
Slaper-Cortenbach, I. ;
Marini, F. C. ;
Krause, D. S. ;
Deans, R. J. ;
Keating, A. ;
Prockop, D. J. ;
Horwitz, E. M. .
CYTOTHERAPY, 2006, 8 (04) :315-317
[10]   Surface antigens of human embryonic stem cells: changes upon differentiation in culture [J].
Draper, JS ;
Pigott, C ;
Thomson, JA ;
Andrews, PW .
JOURNAL OF ANATOMY, 2002, 200 (03) :249-258