Fabrication of open-cell thermoelectric polymer nanocomposites by template-assisted multi-walled carbon nanotubes coating

被引:28
作者
Aghelinejad, Mohammadmehdi [1 ]
Leung, Siu N. [1 ]
机构
[1] York Univ, Lassonde Sch Engn, Dept Mech Engn, Toronto, ON M3J 1P3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Foams; Nano-structures; Polymer-matrix composites; Thermoelectric; COMPOSITES; PERFORMANCE; CONDUCTIVITY; CONVERSION; FILMS;
D O I
10.1016/j.compositesb.2018.03.030
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, open-cell polyvinylidene fluoride (PVDF) templates were employed to assist the formation of multi-walled carbon nanotubes (MWCNT) network in polymer matrices. The continuous network of MWCNT coating and the macro-porosity helped to simultaneously promote the electrical conductivity and suppress the effective thermal conductivity of organic thermoelectric (TE) materials, and thereby enhance their TE conversion efficiencies. In-situ polymerization of polypyrrole during the template-assisted nanotube coating process also promoted the Seebeck coefficient of the polymer nanocomposites by two-fold, while suppressing their electrical conductivity. An optimum ZT value of 1.4 x 10(-5) was achieved for PVDF/MWCNT nanocomposite foams with loaded 24.9 wt% MWCNT. A series of parametric experiments were performed in this study to investigate the effects of open-cell morphology, nanotubes content, and polypyrrole-nanotube interfaces on TE properties of organic materials.
引用
收藏
页码:100 / 107
页数:8
相关论文
共 32 条
[1]   Enhancement of thermoelectric conversion efficiency of polymer/carbon nanotube nanocomposites through foaming-induced microstructuring [J].
Aghelinejad, Mohammadmehdi ;
Leung, Siu N. .
JOURNAL OF APPLIED POLYMER SCIENCE, 2017, 134 (28)
[2]   Foldable Thermoelectric Materials: Improvement of the Thermoelectric Performance of Directly Spun CNT Webs by Individual Control of Electrical and Thermal Conductivity [J].
An, Cheng Jin ;
Kang, Young Hun ;
Lee, A-Young ;
Jang, Kwang-Suk ;
Jeong, Youngjin ;
Cho, Song Yun .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (34) :22142-22150
[3]   RETRACTED: Towards polymer-based organic thermoelectric generators (Retracted Article) [J].
Bubnova, Olga ;
Crispin, Xavier .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (11) :9345-9362
[4]   Recent advances in organic polymer thermoelectric composites [J].
Chen, Guangming ;
Xu, Wei ;
Zhu, Daoben .
JOURNAL OF MATERIALS CHEMISTRY C, 2017, 5 (18) :4350-4360
[5]   Thermoelectric elastomer fabricated using carbon nanotubes and nonconducting polymer [J].
Choi, Jeong-Hun ;
Hyun, Cheol-Min ;
Jo, Hyunjin ;
Son, Ji Hee ;
Lee, Ji Eun ;
Ahn, Ji-Hoon .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2017, 56 (09)
[6]   Effect of the carbon nanotube type on the thermoelectric properties of CNT/Nafion nanocomposites [J].
Choi, Yongjoon ;
Kim, Yuhee ;
Park, Sung-Geun ;
Kim, Young-Gon ;
Sung, Bong June ;
Jang, Sung-Yeon ;
Kim, Woochul .
ORGANIC ELECTRONICS, 2011, 12 (12) :2120-2125
[7]   Research progress on polymer-inorganic thermoelectric nanocomposite materials [J].
Du, Yong ;
Shen, Shirley Z. ;
Cai, Kefeng ;
Casey, Philip S. .
PROGRESS IN POLYMER SCIENCE, 2012, 37 (06) :820-841
[8]   Conducting polymer/carbon particle thermoelectric composites: Emerging green energy materials [J].
Gao, Caiyan ;
Chen, Guangming .
COMPOSITES SCIENCE AND TECHNOLOGY, 2016, 124 :52-70
[9]   Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review [J].
Han, Zhidong ;
Fina, Alberto .
PROGRESS IN POLYMER SCIENCE, 2011, 36 (07) :914-944
[10]   Towards high-performance polymer-based thermoelectric materials [J].
He, Ming ;
Qiu, Feng ;
Lin, Zhiqun .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (05) :1352-1361