Quicksort asymptotics

被引:34
作者
Fill, JA
Janson, S
机构
[1] Johns Hopkins Univ, Dept Math Sci, Baltimore, MD 21218 USA
[2] Univ Uppsala, Dept Math, S-75105 Uppsala, Sweden
基金
美国国家科学基金会;
关键词
Quicksort; sorting algorithm; asymptotics; limit distribution; rate of convergence; Kolmogorov-Smirnov distance; density; moment generating function; numerical analysis; d(p)-metric; coupling;
D O I
10.1016/S0196-6774(02)00216-X
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The number of comparisons X, used by Quicksort to sort an array of it distinct numbers has mean mu(n) of order n log n and standard deviation of order it. Using different methods, Regnier and Rosler each showed that the normalized variate Y-n := (X-n - mu(n))/n converges in distribution, say to Y; the distribution of Y can be characterized as the unique fixed point with zero mean of a certain distributional trans formal ion. We provide the first rates of convergence for the distribution of Y-n to that of F, using various metrics. In particular, we establish the bound 2n(-1/2) in the d(2)-metric, and the rate O(n(epsilon-(1/2))) for Kolmogorov-Smirnov distance, for any positive (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:4 / 28
页数:25
相关论文
共 18 条
[1]  
[Anonymous], 1998, SORTING SEARCHING
[2]   INEQUALITIES FOR XI-K(X,Y) WHEN MARGINALS ARE FIXED [J].
CAMBANIS, S ;
SIMONS, G ;
STOUT, W .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1976, 36 (04) :285-294
[3]   PERFECT SIMULATION FROM THE QUICKSORT LIMIT DISTRIBUTION [J].
Devroye, Luc ;
Fill, James Allen ;
Neininger, Ralph .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2000, 5 :95-99
[4]   The top 10 algorithms [J].
Dongarra, J ;
Sullivan, F .
COMPUTING IN SCIENCE & ENGINEERING, 2000, 2 (01) :22-23
[5]  
Fill JA, 1996, RANDOM STRUCT ALGOR, V8, P1, DOI 10.1002/(SICI)1098-2418(199601)8:1<1::AID-RSA1>3.0.CO
[6]  
2-1
[7]  
Fill JA, 2000, TRENDS MATH, P53
[8]  
Fill JA, 2001, RANDOM STRUCT ALGOR, V19, P376, DOI 10.1002/rsa-10007
[9]  
FILL JA, UNPUB
[10]   A CHARACTERIZATION OF THE SET OF FIXED POINTS OF THE QUICKSORT TRANSFORMATION [J].
Fill, James Allen ;
Janson, Svante .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2000, 5 :77-84