ODD PERFECT NUMBERS, DIOPHANTINE EQUATIONS, AND UPPER BOUNDS

被引:17
作者
Nielsen, Pace P. [1 ]
机构
[1] Brigham Young Univ, Dept Math, Provo, UT 84602 USA
关键词
Diophantine equation; perfect number; LARGEST PRIME DIVISOR;
D O I
10.1090/S0025-5718-2015-02941-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain a new upper bound for odd multiperfect numbers. If N is an odd perfect number with k distinct prime divisors and P is its largest prime divisor, we find as a corollary that 10(12)P(2)N < 2(4k). Using this new bound, and extensive computations, we derive the inequality k >= 10.
引用
收藏
页码:2549 / 2567
页数:19
相关论文
共 16 条
[1]  
BRENT RP, 1991, MATH COMPUT, V57, P857, DOI 10.1090/S0025-5718-1991-1094940-3
[2]  
CHEIN JEZ, 1979, THESIS PENNSYLVANIA
[3]   IMPROVED UPPER BOUNDS FOR ODD MULTIPERFECT NUMBERS [J].
Chen, Yong-Gao ;
Tang, Cui-E .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 89 (03) :353-359
[4]  
Cook R. J., 1996, CRM P LECT NOTES, V19, P67
[5]   SPOOF ODD PERFECT NUMBERS [J].
Dittmer, Samuel J. .
MATHEMATICS OF COMPUTATION, 2014, 83 (289) :2575-2582
[6]  
HAGIS P, 1980, MATH COMPUT, V35, P1027, DOI 10.1090/S0025-5718-1980-0572873-9
[7]   ODD PERFECT NUMBERS [J].
HEATHBROWN, DR .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1994, 115 :191-196
[8]   The second largest prime divisor of an odd perfect number exceeds ten thousand [J].
Iannucci, DE .
MATHEMATICS OF COMPUTATION, 1999, 68 (228) :1749-1760
[9]  
Iannucci DE, 2000, MATH COMPUT, V69, P867
[10]  
Keller W, 2005, MATH COMPUT, V74, P927