FINITENESS OF PROFINITE GROUPS WITH A RATIONAL PROBABILISTIC ZETA FUNCTION

被引:0
作者
Duong Hoang Dung [1 ]
机构
[1] Univ Bielefeld, Fak Math, Postfach 100131, D-33501 Bielefeld, Germany
关键词
Maximal subgroups; Probabilistic zeta function; Profinite groups; SUBGROUPS; CROWNS; INDEX;
D O I
10.1080/00927872.2014.990023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that every profinite group in a certain class with a rational probabilistic zeta function has only finitely many maximal subgroups.
引用
收藏
页码:787 / 795
页数:9
相关论文
共 22 条
[1]  
Boston N, 1996, PROG MATH, V138, P155
[2]   On subgroups with non-zero Mobius numbers in the alternating and symmetric groups [J].
Colombo, Valentina ;
Lucchini, Andrea .
JOURNAL OF ALGEBRA, 2010, 324 (09) :2464-2474
[3]  
Detomi E, 2006, LECT NOTES PURE APPL, V243, P47
[4]   Crowns and factorization of the probabilistic zeta function of a finite group [J].
Detomi, E ;
Lucchini, A .
JOURNAL OF ALGEBRA, 2003, 265 (02) :651-668
[5]   Non-prosoluble profinite groups with a rational probabilistic zeta function [J].
Detomi, Eloisa ;
Lucchini, Andrea .
JOURNAL OF GROUP THEORY, 2007, 10 (04) :453-466
[6]   Profinite groups with a rational probabilistic zeta function [J].
Detomi, Eloisa ;
Lucchini, Andrea .
JOURNAL OF GROUP THEORY, 2006, 9 (02) :203-217
[7]  
Dung DH, 2013, INT J GROUP THEORY, V2, P167
[8]   Rationality of the probabilistic zeta functions of finitely generated profinite groups [J].
Duong Hoang Dung ;
Lucchini, Andrea .
JOURNAL OF GROUP THEORY, 2014, 17 (02) :317-335
[9]  
Gaschutz W., 1959, ILLINOIS J MATH, V3, P469
[10]   SUBGROUPS OF PRIME POWER INDEX IN A SIMPLE-GROUP [J].
GURALNICK, RM .
JOURNAL OF ALGEBRA, 1983, 81 (02) :304-311