Facile Preparation of Ultrathin Co3O4/Nanocarbon Composites with Greatly Improved Surface Activity as a Highly Efficient Oxygen Evolution Reaction Catalyst

被引:54
作者
Chen, Yanyan [1 ]
Hu, Jun [1 ]
Diao, Honglin [1 ]
Luo, Wenjing [1 ]
Song, Yu-Fei [1 ]
机构
[1] Beijing Univ Chem Technol, State Key Lab Chem Resource Engn, Beijing 100029, Peoples R China
关键词
electrochemistry; nanocomposite; oxygen evolution reaction; reduced graphene oxide; ultrathin Co3O4; LITHIUM-ION BATTERIES; GRAPHENE OXIDE; WATER OXIDATION; CO3O4; NANOCRYSTALS; HIGH-PERFORMANCE; ELECTROCATALYSTS; NANOSHEETS; REDUCTION; NANOPARTICLES; PHOTOANODES;
D O I
10.1002/chem.201700225
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The efficient catalytic oxidation of water to dioxygen plays a significant role in solar fuel and artificial photosynthetic systems. It remains highly challenging to develop oxygen evolution reaction (OER) catalysts with high activity and low cost under mild conditions. Here, a new composite material is reported based on ultrathin 2D Co3O4 nanosheets and reduced graphene oxides (rGO) by means of a one-pot hydrothermal strategy. The ultrathin Co3O4/rGO nanocomposite shows superior stability under alkaline conditions and exhibits an overpotential of 290mV with a Tafel slope of 68mAdec(-1), which is much smaller than that of bare Co3O4 catalyst. Extensive experiments were also carried out using 0D CS and 1D CNTs (CS=carbon spheres, CNTs=carbon nanotubes) in place of the 2D rGO. The overpotentials of as-prepared nanocomposites decrease with the increase of the dimension of nanocarbons, suggesting the electrochemistry activity is closely related to the surface area of carbon substrates. In addition, compared with ultrathin 2D Co3O4 nanosheets with a Co2+/Co3+ ratio of 1.2, the as-prepared ultrathin Co3O4/rGO nanocomposite with a Co2+/Co3+ ratio of 1.4 contributes to the better OER performance as more oxygen vacancies can be formed in the ultrathin Co3O4/rGO nanocomposite under the experimental conditions. Compared with other Co3O4-containing composite materials reported so far, the ultrathin Co3O4/rGO nanocomposites show excellent OER performance.
引用
收藏
页码:4010 / 4016
页数:7
相关论文
共 50 条
  • [1] Ultrathin Co3O4 Nanomeshes for the Oxygen Evolution Reaction
    Li, Ying
    Li, Fu-Min
    Meng, Xin-Ying
    Li, Shu-Ni
    Zeng, Jing-Hui
    Chen, Yu
    ACS CATALYSIS, 2018, 8 (03): : 1913 - 1920
  • [2] Ultrathin porous Co3O4 nanoplates as highly efficient oxygen evolution catalysts
    Zhou, Xuemei
    Xia, Zhaoming
    Tian, Zhinmin
    Ma, Yuanyuan
    Qu, Yongquan
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (15) : 8107 - 8114
  • [3] Highly acid-durable carbon coated Co3O4 nanoarrays as efficient oxygen evolution electrocatalysts
    Yang, Xiulin
    Li, Henan
    Lu, Ang-Yu
    Min, Shixiong
    Idriss, Zacharie
    Hedhili, Mohamed Nejib
    Huang, Kuo-Wei
    Idriss, Hicham
    Li, Lain-Jong
    NANO ENERGY, 2016, 25 : 42 - 50
  • [4] Preparation and Electrocatalytic Activities for Oxygen Evolution Reaction of CoBx/Co3O4 Catalyst
    Liu Guo-Qiang
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2021, 37 (02) : 267 - 275
  • [5] Graphene-like holey Co3O4 nanosheets as a highly efficient catalyst for oxygen evolution reaction
    Dou, Yuhai
    Liao, Ting
    Ma, Zongqing
    Tian, Dongliang
    Liu, Qiannan
    Xiao, Feng
    Sun, Ziqi
    Kim, Jung Ho
    Dou, Shi Xue
    NANO ENERGY, 2016, 30 : 267 - 275
  • [6] Ultrathin Co3O4 nanofilm as an efficient bifunctional catalyst for oxygen evolution and reduction reaction in rechargeable zinc-air batteries
    He, Yu
    Zhang, Jinfeng
    He, Guowei
    Han, Xiaopeng
    Zheng, Xuerong
    Zhong, Cheng
    Hu, Wenbin
    Deng, Yida
    NANOSCALE, 2017, 9 (25) : 8623 - 8630
  • [7] A DFT investigation on surface and defect modulation of the Co3O4 catalyst for efficient oxygen evolution reaction
    Huo, Chenxu
    Lang, Xiufeng
    Song, Guoxiong
    Wang, Yujie
    Ren, Shihong
    Liao, Weidan
    Guo, Hao
    Chen, Xueguang
    SURFACE SCIENCE, 2024, 748
  • [8] Morphology control of Co3O4 with nickel incorporation for highly efficient oxygen evolution reaction
    Du, Hao
    Pu, Wenhong
    Yang, Changzhu
    APPLIED SURFACE SCIENCE, 2021, 541
  • [9] The urchin-like sphere arrays Co3O4 as a bifunctional catalyst for hydrogen evolution reaction and oxygen evolution reaction
    Li, Ruchun
    Zhou, Dan
    Luo, Jiaxian
    Xu, Weiming
    Li, Jingwei
    Li, Shuoshuo
    Cheng, Pengpeng
    Yuan, Dingsheng
    JOURNAL OF POWER SOURCES, 2017, 341 : 250 - 256
  • [10] BCN-Co3O4 hybrid - a highly efficient catalyst for the oxygen evolution reaction and dye degradation
    Balakrishnan, Thiruparasakthi
    Anis, Mohamed
    Arun, S.
    Kumar, Mithin
    Kumar, Sakthivel Arun
    Mayavan, Sundar
    RSC ADVANCES, 2016, 6 (83) : 79448 - 79451