Restricted multi-pruning of decision trees

被引:0
作者
Azad, Mohammad [1 ]
Chikalov, Igor [1 ]
Moshkov, Mikhail [1 ]
Hussain, Shahid [2 ]
机构
[1] King Abdullah Univ Sci & Technol, Comp Elect & Math Sci & Engn Div, Thuwal, Saudi Arabia
[2] Habib Univ, Sch Sci & Engn, Karachi, Pakistan
来源
DATA SCIENCE AND KNOWLEDGE ENGINEERING FOR SENSING DECISION SUPPORT | 2018年 / 11卷
关键词
Decision trees; Pareto optimal points; dynamic programming;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The trade-off between the decision tree size and good classification accuracy is a research challenge. It can be achieved if we create multiple pruned trees from the set of Pareto optimal points using dynamic programming approach (multi-pruning process). However, this process can be extensively slow. We consider a modification of the multi-pruning process (restricted multi-pruning) that requires less memory and time but usually keeps the accuracy of the constructed classifiers.
引用
收藏
页码:371 / 378
页数:8
相关论文
共 50 条
  • [1] A dynamic programming based pruning method for decision trees
    Li, XB
    Sweigart, J
    Teng, J
    Donohue, J
    Thombs, L
    INFORMS JOURNAL ON COMPUTING, 2001, 13 (04) : 332 - 344
  • [2] A comparative analysis of methods for pruning decision trees
    Esposito, F
    Malerba, D
    Semeraro, G
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1997, 19 (05) : 476 - 491
  • [3] Selective Rademacher penalization and reduced error pruning of decision trees
    Kääriäinen, M
    Malinen, T
    Elomaa, T
    JOURNAL OF MACHINE LEARNING RESEARCH, 2004, 5 : 1107 - 1126
  • [4] A heuristic for learning decision trees and pruning them into classification rules
    Ranilla, J
    Luaces, O
    Bahamonde, A
    AI COMMUNICATIONS, 2003, 16 (02) : 71 - 87
  • [5] Bagging decision multi-trees
    Estruch, V
    Ferri, C
    Hernández-Orallo, J
    Ramírez-Quintana, MJ
    MULTIPLE CLASSIFIER SYSTEMS, PROCEEDINGS, 2004, 3077 : 41 - 51
  • [6] Support Vector Machine Pre-pruning Approaches on Decision Trees for Better Classification
    Sim, Doreen Ying Ying
    PROCEEDINGS OF 2019 2ND INTERNATIONAL CONFERENCE ON ELECTRONICS AND ELECTRICAL ENGINEERING TECHNOLOGY (EEET 2019), 2019, : 30 - 36
  • [7] Multi-stage optimization of decision and inhibitory trees for decision tables with many-valued decisions
    Azad, Mohammad
    Moshkov, Mikhail
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2017, 263 (03) : 910 - 921
  • [8] Decision trees for hierarchical multi-label classification
    Celine Vens
    Jan Struyf
    Leander Schietgat
    Sašo Džeroski
    Hendrik Blockeel
    Machine Learning, 2008, 73 : 185 - 214
  • [9] Decision trees for hierarchical multi-label classification
    Vens, Celine
    Struyf, Jan
    Schietgat, Leander
    Dzeroski, Saso
    Blockeel, Hendrik
    MACHINE LEARNING, 2008, 73 (02) : 185 - 214
  • [10] A comparison of pruning criteria for probability trees
    Fierens, Daan
    Ramon, Jan
    Blockeel, Hendrik
    Bruynooghe, Maurice
    MACHINE LEARNING, 2010, 78 (1-2) : 251 - 285