Welding in a 7000 series aluminium alloy can lead to the development of a white zone microstructure and liquation cracking in the heat affected zone adjacent to the fusion boundary. A Gleeble 1500 thermomechanical system has been used to study the conditions associated with damage development. A range of simulations has been carried out covering thermal and thermomechanical conditions typically encountered during weld manufacture. Results show that both the white zone microstructure and liquation cracking can be simulated at a sufficient scale to permit full characterisation in laboratory testpieces. Data analysis has defined and mapped the stress and temperature conditions leading to crack initiation. This evaluation demonstrates that the susceptibility for cracking is minimised by increasing the cooling rate following weld manufacture.