ZnS, Fe, and P co-doped N enriched carbon derived from MOFs as efficient electrocatalyst for oxygen reduction reaction

被引:12
|
作者
Zhao, Liping [1 ]
Wang, Anqi [1 ]
Yang, Ailin [1 ]
Zuo, Guihong [1 ]
Dai, Jun [2 ]
Zheng, Youjin [3 ]
机构
[1] Mudanjiang Normal Univ, Heilongjiang Prov Key Lab New Carbon Base Funct &, Mudanjiang 157011, Peoples R China
[2] Henan Polytech Univ, Sch Safety Sci & Engn, Inst Chem Safety, Jiaozuo 454003, Henan, Peoples R China
[3] Mudanjiang Normal Univ, Sch Phys & Elect Engn, Mudanjiang 157011, Peoples R China
关键词
PVP/ZIF-8; ZnFeSP/NC; ORR activity; Long-term operation stability; POROUS CARBON; ACTIVE-SITES; GRAPHENE;
D O I
10.1016/j.ijhydene.2020.08.180
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Exploring electrocatalysts with low cost and excellent performance for oxygen reduction reaction is still a significant challenge. In this paper, we introduce a novel strategy to fabricate ZnS, Fe, and P co-doped N enriched carbon (ZnFeSP/NC) via the direct carbonization of PVP/ZIF-8 combined with absorption, sulphurization, and phosphorization processes. The as-synthesized ZnFeSP/NC was used as electrocatalyst for oxygen reduction reaction (ORR). We explored the influence of Fe, S, and P elements on the ORR activity of the catalysts. It can be found that ZnS nanoparticles were formed and attached on the surface of the ZnFeSP/NC nanoparticles. alpha-Fe and P element were well dispersed on ZnFeSP/NC nanoparticles. Fe, S, and P element can highly enhance the ORR activity of the catalysts. Compared to Zn/NC, ZnFe/NC, and ZnFeS/CN, ZnFeSP/NC shows the optimal ORR performance with the half-wave potential of 0.859 V and a current density of 3.33 mA cm(-2) at -0.85 V. Furthermore, ZnFeSP/NC also exhibits excellent long-term operation stability, effectively avoiding any ORR performance decay. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:31863 / 31870
页数:8
相关论文
共 50 条
  • [1] Fe/N co-doped mesoporous carbon nanomaterial as an efficient electrocatalyst for oxygen reduction reaction
    He, Chuansheng
    Zhang, Tingting
    Sun, Fengzhan
    Li, Changqing
    Lin, Yuqing
    ELECTROCHIMICA ACTA, 2017, 231 : 549 - 556
  • [2] Fe-N Co-doped Porous Carbon Derived from Ionic Liquids as an Efficient Electrocatalyst for the Oxygen Reduction Reaction
    Liu, Yong
    Li, Shenshen
    Li, Xiying
    Mao, Liqun
    Liu, Fujian
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2018, 57 (46) : 15638 - 15646
  • [3] Chitosan Waste-Derived Co and N Co-doped Carbon Electrocatalyst for Efficient Oxygen Reduction Reaction
    Xie, Shilei
    Huang, Senchuan
    Wei, Wenjie
    Yang, Xinzhe
    Liu, Yi
    Lu, Xihong
    Tong, Yexiang
    CHEMELECTROCHEM, 2015, 2 (11): : 1806 - 1812
  • [4] Agaricus bisporus residue-derived Fe/N co-doped carbon materials as an efficient electrocatalyst for oxygen reduction reaction
    Chen, Guanyi
    Li, Kai
    Wu, Zhaoting
    Lin, Fawei
    Shen, Chenbo
    Yan, Beibei
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (70) : 34737 - 34748
  • [5] Intumescent flame retardant-derived P,N co-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction
    Wang, Yinling
    Zhang, Xuemei
    Li, Anna
    Li, Maoguo
    CHEMICAL COMMUNICATIONS, 2015, 51 (79) : 14801 - 14804
  • [6] Fe/N co-doped carbon microspheres as a high performance electrocatalyst for the oxygen reduction reaction
    Cheng, Pengpeng
    Li, Shuoshuo
    Li, Ruchun
    Yan, Jing
    Yu, Wendan
    Shao, Xiaofeng
    Hu, Zhaoxia
    Yuan, Dingsheng
    RSC ADVANCES, 2015, 5 (130): : 107389 - 107395
  • [7] Sepia-Derived N, P Co-doped Porous Carbon Spheres as Oxygen Reduction Reaction Electrocatalyst and Supercapacitor
    Ren, Guangyuan
    Li, Yunan
    Chen, Quanshui
    Qian, Yong
    Zheng, Jugong
    Zhu, Yean
    Teng, Chao
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (12): : 16032 - 16038
  • [8] A Defect-rich N, P Co-doped Carbon Foam as Efficient Electrocatalyst toward Oxygen Reduction Reaction
    Yang, Maomao
    Shu, Xinxin
    Zhang, Jintao
    CHEMCATCHEM, 2020, 12 (16) : 4105 - 4111
  • [9] TiN nanoparticles hybridized with Fe, N co-doped carbon nanosheets composites as highly efficient electrocatalyst for oxygen reduction reaction
    Liu, Youlin
    Shen, Yuesong
    Zhu, Shemin
    Li, Dongyan
    CHEMICAL ENGINEERING JOURNAL, 2020, 400
  • [10] MOF-derived Co, Fe, and Ni co -doped N -enriched hollow carbon as e fficient electrocatalyst for oxygen reduction reaction
    Jing, Yanqiu
    Cheng, Yuyuan
    Wang, Lin
    Liu, Yuan
    Yu, Baohua
    Yang, Chao
    CHEMICAL ENGINEERING JOURNAL, 2020, 397