On exponentials of additive functionals of Markov processes

被引:7
作者
Stummer, W
Sturm, KT
机构
[1] Univ Ulm, Dept Finance, D-89069 Ulm, Germany
[2] Univ Bonn, Inst Angew Math, D-53115 Bonn, Germany
关键词
Markov processes; additive functionals; Khas'minskii Lemma;
D O I
10.1016/S0304-4149(99)00064-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We give necessary and sufficient conditions in order that exponentials of additive functionals of Markov processes have finite expectations. Furthermore, we obtain sharp estimates for these expectations. More precisely, we investigate both the Stieltjes exponential and the ordinary exponential of right-continuous additive functionals of general right-continuous, time-inhomogenous Markov processes. The well-known Khas'minskii Lemma (1959, Probab. Appl. 4, 309-318) follows as a corollary. (C) 2000 Elsevier Science B.V. All rights reserved. MSC: Primary 60J55; 60J40.
引用
收藏
页码:45 / 60
页数:16
相关论文
共 28 条
[1]   BROWNIAN-MOTION AND HARNACK INEQUALITY FOR SCHRODINGER-OPERATORS [J].
AIZENMAN, M ;
SIMON, B .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (02) :209-273
[2]  
[Anonymous], 1971, THEORY APPL INFINITE
[3]   CRITERION FOR CONVERGENCE OF KAC FUNCTIONALS AND APPLICATIONS IN QUANTUM-MECHANICS AND GEOMETRY [J].
BERTHIER, AM ;
GAVEAU, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1978, 29 (03) :416-424
[4]  
BLUMENTHAL RM, 1968, MARKOV PROCESSES POT
[5]  
BOUKRICHA A, 1987, EXPO MATH, V5, P97
[6]  
CHUNG K. L., 1995, From Brownian Motion to Schrodinger's Equation, V312
[7]   GENERAL GAUGE THEOREM FOR MULTIPLICATIVE FUNCTIONALS [J].
CHUNG, KL ;
RAO, KM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 306 (02) :819-836
[8]  
CHUNG KL, 1983, PROPERTIES FINITE GA, P16
[9]  
Dellacherie C., 1982, Probabilities and Potential B: Theory of Martingales
[10]   SOME APPLICATIONS OF FORMULA OF VARIABLE CHANGES TO SEMIMARTINGALES [J].
DOLEANSDADE, C .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1970, 16 (03) :181-+