Aluminum and zinc have been related to the pathogenesis of Parkinson's disease (PD), the former for its neurotoxicity and the latter for its apparent antioxidant properties. 6-Hydroxydopamine (6-OHDA) is an important neurotoxin putatively involved in the pathogenesis of PD, its neurotoxicity often being related to oxidative stress. The potential effect of these metals on the oxidative stress induced by 6-OHDA autoxidation and the potential of ascorbic acid (AA), cysteine, and glutathione to modify this effect were investigated. Both metals, particularly Al3+, induced a significant reduction in (OH)-O-. production by 6-OHDA autoxidation. The combined action of AA and a metal caused a significant and sustained increase in (OH)-O-. generation, particularly with Al3+, while the effect of sulfhydryl reductants was limited to only the first few minutes of the reaction. However, both Al3+ and Zn2+ provoked a decrease in the lipid peroxidation induced by 6-OHDA autoxidation using mitochondrial preparations from rat brain, assessed by TBARS formation. In the presence of AA, only Al3+ induced a significant reduction in lipid peroxidation. After intrastriatal injections of 6-OHDA in rats, tyrosine hydroxylase immunohistochemistry revealed that Al3+ reduces 6-OHDA-induced dopaminergic lesion in the striatum, which corroborates the involvement of lipid peroxidation in 6-OHDA neurotoxicity and appears to discard the participation of this mechanism on PD by Al3+ accumulation. The previously reported antioxidant properties of Zn2+ appear to be related to the induction of Zn2+-containing proteins and not to the metal per se. (C) 2001 Elsevier Science B.V. All rights reserved.