On the preservation of invariants by explicit Runge-Kutta methods

被引:55
作者
Calvo, M.
Hernandez-Abreu, D. [1 ]
Montijano, J. I.
Randez, L.
机构
[1] Univ Zaragoza, Dept Matemat Aplicada, E-50009 Zaragoza, Spain
[2] Univ La Laguna, Dept Anal Matemat, San Cristobal la Laguna 38271, Spain
关键词
initial value problems; explicit Runge-Kutta methods; numerical geometric integration; preservation of invariants; variable step-size codes;
D O I
10.1137/04061979X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new strategy to preserve invariants in the numerical integration of initial value problems with explicit Runge-Kutta methods is presented. It is proved that this technique retains the order of the original method, has an easy and cheap implementation, and can be used in adaptive Runge-Kutta codes. Some numerical experiments with the classical code of Dormand and Prince, DoPri5(4), based on a pair of embedded methods with orders 5 and 4, are presented to show the behavior of the new method for several problems which possess invariants.
引用
收藏
页码:868 / 885
页数:18
相关论文
共 50 条
  • [1] Invariants preserving schemes based on explicit Runge-Kutta methods
    Kojima, H.
    BIT NUMERICAL MATHEMATICS, 2016, 56 (04) : 1317 - 1337
  • [2] Explicit adaptive Runge-Kutta methods
    L. M. Skvortsov
    Mathematical Models and Computer Simulations, 2012, 4 (1) : 82 - 91
  • [3] Exponentially-fitted explicit Runge-Kutta methods
    Vanden Berghe, G
    De Meyer, H
    Van Daele, M
    Van Hecke, T
    COMPUTER PHYSICS COMMUNICATIONS, 1999, 123 (1-3) : 7 - 15
  • [4] Invariants preserving schemes based on explicit Runge–Kutta methods
    H. Kojima
    BIT Numerical Mathematics, 2016, 56 : 1317 - 1337
  • [5] Stability properties of explicit exponential Runge-Kutta methods
    Maset, S.
    Zennaro, M.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (01) : 111 - 135
  • [6] New stability results for explicit Runge-Kutta methods
    Ait-Haddou, Rachid
    BIT NUMERICAL MATHEMATICS, 2019, 59 (03) : 585 - 612
  • [7] Explicit adaptive Runge-Kutta methods for stiff and oscillation problems
    L. M. Skvortsov
    Computational Mathematics and Mathematical Physics, 2011, 51 : 1339 - 1352
  • [8] EXPLICIT STRONG STABILITY PRESERVING MULTISTEP RUNGE-KUTTA METHODS
    Bresten, Christopher
    Gottlieb, Sigal
    Grant, Zachary
    Higgs, Daniel
    Ketcheson, David I.
    Nemeth, Adrian
    MATHEMATICS OF COMPUTATION, 2017, 86 (304) : 747 - 769
  • [9] Selecting Explicit Runge-Kutta Methods with Improved Stability Properties
    Zlatev, Zahari
    Georgiev, Krassimir
    Dimov, Ivan
    LARGE-SCALE SCIENTIFIC COMPUTING, LSSC 2015, 2015, 9374 : 409 - 416
  • [10] Application of Geometric Explicit Runge-Kutta Methods to Pharmacokinetic Models
    Akanbi, Moses A.
    Patidar, Kailash C.
    MODELING AND SIMULATION IN ENGINEERING, ECONOMICS, AND MANAGEMENT, MS 2012, 2012, 115 : 259 - 269