On the derived subgroups of the free nilpotent groups of finite rank

被引:2
作者
Blyth, Russell D. [1 ]
Moravec, Primoz [2 ]
Morse, Robert Fitzgerald [3 ]
机构
[1] St Louis Univ, Dept Math & Comp Sci, St Louis, MO 63103 USA
[2] Univ Ljubljana, Fak Matemat & Fiziko, Ljubljana 1000, Slovenia
[3] Univ Evansville, Dept Elect Engn & Comp Sci, Evansville, IN 47722 USA
来源
ASPECTS OF INFINITE GROUPS | 2008年 / 1卷
关键词
Free nilpotent group; Derived subgroup; Nonabelian tensor square;
D O I
10.1142/9789812793416_0004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide a detailed structure description of the derived subgroups of the free nilpotent groups of finite rank. This description is then applied to computing the nonabelian tensor squares of the free nilpotent groups of finite rank.
引用
收藏
页码:45 / +
页数:2
相关论文
共 9 条
[1]  
BLYTH RD, 2008, COMPUTATIONAL GROUP
[2]   VANKAMPEN THEOREMS FOR DIAGRAMS OF SPACES [J].
BROWN, R ;
LODAY, JL .
TOPOLOGY, 1987, 26 (03) :311-335
[3]   SOME COMPUTATIONS OF NON-ABELIAN TENSOR-PRODUCTS OF GROUPS [J].
BROWN, R ;
JOHNSON, DL ;
ROBERTSON, EF .
JOURNAL OF ALGEBRA, 1987, 111 (01) :177-202
[4]  
DENNIS RK, HOMOLOGY FUNCT UNPUB
[5]   EXTENDING WITT FORMULA TO FREE ABELIAN BY NILPOTENT GROUPS [J].
GAGLIONE, AM ;
SPELLMAN, D .
JOURNAL OF ALGEBRA, 1989, 126 (01) :170-175
[6]  
GOLDINA NP, 1956, DOKL AKAD NAUK SSSR+, V111, P528
[8]  
Moran S, 1962, T AM MATH SOC, V103, P495
[9]   A CERTAIN EXACT SEQUENCE [J].
WHITEHEAD, JHC .
ANNALS OF MATHEMATICS, 1950, 52 (01) :51-110