Combining LBP Difference and Feature Correlation for Texture Description

被引:102
作者
Hong, Xiaopeng [1 ]
Zhao, Guoying [1 ]
Pietikainen, Matti [1 ]
Chen, Xilin [1 ,2 ]
机构
[1] Univ Oulu, Dept Comp Sci & Engn, FIN-90570 Oulu, Finland
[2] Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
基金
芬兰科学院;
关键词
Feature extraction; image descriptors; image texture analysis; covariance matrix; local binary pattern; LOCAL BINARY PATTERNS; CLASSIFICATION; APPEARANCE;
D O I
10.1109/TIP.2014.2316640
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Effective characterization of texture images requires exploiting multiple visual cues from the image appearance. The local binary pattern (LBP) and its variants achieve great success in texture description. However, because the LBP(-like) feature is an index of discrete patterns rather than a numerical feature, it is difficult to combine the LBP(-like) feature with other discriminative ones by a compact descriptor. To overcome the problem derived from the nonnumerical constraint of the LBP, this paper proposes a numerical variant accordingly, named the LBP difference (LBPD). The LBPD characterizes the extent to which one LBP varies from the average local structure of an image region of interest. It is simple, rotation invariant, and computationally efficient. To achieve enhanced performance, we combine the LBPD with other discriminative cues by a covariance matrix. The proposed descriptor, termed the covariance and LBPD descriptor (COV-LBPD), is able to capture the intrinsic correlation between the LBPD and other features in a compact manner. Experimental results show that the COV-LBPD achieves promising results on publicly available data sets.
引用
收藏
页码:2557 / 2568
页数:12
相关论文
共 54 条
[1]   Geometric means in a novel vector space structure on symmetric positive-definite matrices [J].
Arsigny, Vincent ;
Fillard, Pierre ;
Pennec, Xavier ;
Ayache, Nicholas .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2007, 29 (01) :328-347
[2]   Rotation-invariant colour texture classification through multilayer CCR [J].
Bianconi, Francesco ;
Fernandez, Antonio ;
Gonzalez, Elena ;
Caride, Diego ;
Calvino, Ana .
PATTERN RECOGNITION LETTERS, 2009, 30 (08) :765-773
[3]   A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells [J].
Boland, MV ;
Murphy, RF .
BIOINFORMATICS, 2001, 17 (12) :1213-1223
[4]   Class-specific material categorisation [J].
Caputo, B ;
Hayman, E ;
Mallikarjuna, P .
TENTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1 AND 2, PROCEEDINGS, 2005, :1597-1604
[5]   Classifying materials in the real world [J].
Caputo, Barbara ;
Hayman, Eric ;
Fritz, Mario ;
Eklundh, Jan-Olof .
IMAGE AND VISION COMPUTING, 2010, 28 (01) :150-163
[6]   A multiresolution approach to automated classification of protein subcellular location images [J].
Chebira, Amina ;
Barbotin, Yann ;
Jackson, Charles ;
Merryman, Thomas ;
Srinivasa, Gowri ;
Murphy, Robert F. ;
Kovacevic, Jelena .
BMC BIOINFORMATICS, 2007, 8 (1)
[7]   WLD: A Robust Local Image Descriptor [J].
Chen, Jie ;
Shan, Shiguang ;
He, Chu ;
Zhao, Guoying ;
Pietikainen, Matti ;
Chen, Xilin ;
Gao, Wen .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (09) :1705-1720
[8]   Using Basic Image Features for Texture Classification [J].
Crosier, M. ;
Griffin, L. D. .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 88 (03) :447-460
[9]  
Cuicui Kang, 2011, 2011 18th IEEE International Conference on Image Processing (ICIP 2011), P3009, DOI 10.1109/ICIP.2011.6116296
[10]   Region Moments: Fast invariant descriptors for detecting small image structures [J].
Doretto, Gianfranco ;
Yao, Yi .
2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, :3019-3026