Molecular mechanism of salicylic acid-induced abiotic stress tolerance in higher plants

被引:101
|
作者
Kang, Guozhang [1 ]
Li, Gezi [1 ]
Guo, Tiancai [2 ]
机构
[1] Henan Agr Univ, Natl Engn Res Ctr Wheat, Natl Key Lab Wheat & Maize Crop Sci, Zhengzhou 450002, Peoples R China
[2] Henan Agr Univ, Collaborat Innovat Ctr Henan Food Crops, Zhengzhou 450002, Peoples R China
关键词
Salicylic acid; Abiotic stress; Tolerance; Molecular mechanism; NAC TRANSCRIPTION FACTOR; HEAT-SHOCK PROTEINS; SALT TOLERANCE; ALTERNATIVE OXIDASE; ENHANCED TOLERANCE; MONODEHYDROASCORBATE REDUCTASE; DISEASE RESISTANCE; CONFERS TOLERANCE; OXIDATIVE STRESS; TRANSGENIC RICE;
D O I
10.1007/s11738-014-1603-z
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Salicylic acid (SA), a key signaling molecule in higher plants, has been found to play a role in the response to a diverse range of phytopathogens and is essential for the establishment of both local and systemic-acquired resistance. Recent studies have indicated that SA also plays an important role in abiotic stress-induced signaling, and studies on SA-modulated abiotic tolerance have mainly focused on the antioxidant capacity of plants by altering the activity of anti-oxidative enzymes. However, little information is available about the molecular mechanisms of SA-induced abiotic stress tolerance. Here, we review recent progress toward characterizing the SA-regulated genes and proteins, the SA signaling pathway, the connections and differences between SA-induced tolerances to biotic and abiotic stresses, and the interaction of SA with other plant hormones under conditions of abiotic stress. The future prospects related to molecular tolerance of SA in response to abiotic stresses are also further summarized.
引用
收藏
页码:2287 / 2297
页数:11
相关论文
共 50 条
  • [41] The physiological function and molecular mechanism of hydrogen sulfide resisting abiotic stress in plants
    Shah Saud
    Shah Hassan
    Liangbing Xiong
    Xiaoyang Sun
    Shahla Andleeb
    Shah Fahad
    Brazilian Journal of Botany, 2022, 45 : 563 - 572
  • [42] The physiological function and molecular mechanism of hydrogen sulfide resisting abiotic stress in plants
    Saud, Shah
    Hassan, Shah
    Xiong, Liangbing
    Sun, Xiaoyang
    Andleeb, Shahla
    Fahad, Shah
    BRAZILIAN JOURNAL OF BOTANY, 2022, 45 (02) : 563 - 572
  • [43] Mechanistic Insights on Salicylic Acid-Induced Enhancement of Photosystem II Function in Basil Plants under Non-Stress or Mild Drought Stress
    Sperdouli, Ilektra
    Panteris, Emmanuel
    Moustaka, Julietta
    Aydin, Tugba
    Baycu, Gulriz
    Moustakas, Michael
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (11)
  • [44] Physiological, Biochemical, and Molecular Mechanisms of Heat Stress Tolerance in Plants
    Hasanuzzaman, Mirza
    Nahar, Kamrun
    Alam, Md Mahabub
    Roychowdhury, Rajib
    Fujita, Masayuki
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2013, 14 (05) : 9643 - 9684
  • [45] Priming with Nanoscale Materials for Boosting Abiotic Stress Tolerance in Crop Plants
    Amritha, M. S.
    Sridharan, Kishore
    Puthur, Jos T.
    Dhankher, Om Parkash
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2021, 69 (35) : 10017 - 10035
  • [46] Uncovering the mechanisms of salicylic acid-mediated abiotic stress tolerance in horticultural crops
    Yang, Hua
    Fang, Rui
    Luo, Ling
    Yang, Wei
    Huang, Qiong
    Yang, Chunlin
    Hui, Wenkai
    Gong, Wei
    Wang, Jingyan
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [47] Melatonin-Mediated Abiotic Stress Tolerance in Plants
    Zeng, Wen
    Mostafa, Salma
    Lu, Zhaogeng
    Jin, Biao
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [48] Metabolomics as a Tool to Investigate Abiotic Stress Tolerance in Plants
    Arbona, Vicent
    Manzi, Matias
    de Ollas, Carlos
    Gomez-Cadenas, Aurelio
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2013, 14 (03) : 4885 - 4911
  • [49] MicroRNAs As Potential Targets for Abiotic Stress Tolerance in Plants
    Shriram, Varsha
    Kumar, Vinay
    Devarumath, Rachayya M.
    Khare, Tushar S.
    Wani, Shabir H.
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [50] SALICYLIC ACID-INDUCED IMPROVEMENT IN GERMINATION AND GROWTH PARAMETERS OF WHEAT UNDER SALINITY STRESS
    Fardus, J.
    Matin, M. A.
    Hasanuzzaman, M.
    Hossain, M. A.
    Hasanuzzaman, M.
    JOURNAL OF ANIMAL AND PLANT SCIENCES, 2018, 28 (01) : 197 - 207