PERSISTENCE OF PERIODIC ORBITS IN PERIODICALLY FORCED IMPACT SYSTEMS

被引:1
|
作者
Feckan, Michal [1 ,2 ]
Pospisil, Michal [3 ]
机构
[1] Comenius Univ, Dept Math Anal & Numer Math, SK-84248 Bratislava, Slovakia
[2] Slovak Acad Sci, Math Inst, SK-81473 Bratislava, Slovakia
[3] Brno Univ Technol, Fac Elect Engn & Commun, Ctr Res & Utilizat Renewable Energy, CZ-61600 Brno, Czech Republic
关键词
periodic orbit; impact systems; persistence; BIFURCATION;
D O I
10.2478/s12175-013-0190-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to the study of persistence of forced periodic solutions for impact systems from single periodic solutions of unperturbed impact equations. An example of planar discontinuous ordinary differential equations is given to illustrate the theory. (C) 2014 Mathematical Institute Slovak Academy of Sciences
引用
收藏
页码:101 / 118
页数:18
相关论文
共 50 条
  • [1] Bifurcation of sliding periodic orbits in periodically forced discontinuous systems
    Feckan, Michal
    Pospisil, Michal
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (01) : 150 - 162
  • [3] Diversity and transition characteristics of sticking and non-sticking periodic impact motions of periodically forced impact systems with large dissipation
    G. W. Luo
    X. H. Lv
    X. F. Zhu
    Y. Q. Shi
    S. S. Du
    Nonlinear Dynamics, 2018, 94 : 1047 - 1079
  • [4] Diversity and transition characteristics of sticking and non-sticking periodic impact motions of periodically forced impact systems with large dissipation
    Luo, G. W.
    Lv, X. H.
    Zhu, X. F.
    Shi, Y. Q.
    Du, S. S.
    NONLINEAR DYNAMICS, 2018, 94 (02) : 1047 - 1079
  • [5] Persistence of periodic and homoclinic orbits, first integrals and commutative vector fields in dynamical systems
    Motonaga, Shoya
    Yagasaki, Kazuyuki
    NONLINEARITY, 2021, 34 (11) : 7574 - 7608
  • [6] Diversity evolution and parameter matching of periodic-impact motions of a periodically forced system with a clearance
    G. W. Luo
    Y. Q. Shi
    C. X. Jiang
    L. Y. Zhao
    Nonlinear Dynamics, 2014, 78 : 2577 - 2604
  • [7] Diversity evolution and parameter matching of periodic-impact motions of a periodically forced system with a clearance
    Luo, G. W.
    Shi, Y. Q.
    Jiang, C. X.
    Zhao, L. Y.
    NONLINEAR DYNAMICS, 2014, 78 (04) : 2577 - 2604
  • [8] Response solutions and quasi-periodic degenerate bifurcations for quasi-periodically forced systems
    Si, Wen
    Si, Jianguo
    NONLINEARITY, 2018, 31 (06) : 2361 - 2418
  • [9] Persistence and periodic orbits for an SIS model in a polluted environment
    Wang, F
    Ma, Z
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 47 (4-5) : 779 - 792
  • [10] Pattern types and bifurcation characteristics of the low frequency periodic impact vibration of a periodically forced system with a clearance
    Shi Y.
    Du S.
    Lü X.
    Luo G.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2019, 38 (06): : 218 - 225