The modification of carboxylated multi-wall carbon nanotubes (MWCNT-COOH) with chitosan (Chi) has been investigated to prepare a nanocomposite material (MWCNT-Chi) for the removal of picric acid from aqueous solutions. Materials were characterized by FT-IR, TGA, DTG, FESEM, EDX, BET and zeta potential. Batch experiments such as solution pH, dosage of adsorbents, contact time, concentration of the picric acid and temperature were achieved to study sorption process. Kinetic studies were well described by pseudo-second-order kinetic model for both adsorbents. The six isotherm models: Langmuir (four linear forms), Freundlich, Tempkin, Halsey, Harkins-Jura and Dubinin-Radushkevich models were applied to determine the characteristic parameters of the adsorption process. Isotherm studies showed that the Langmuir isotherm for MWCNT-Chi and Freundlich and Halsey models for both adsorbents were found to best represent the measured sorption data. In addition, the results of Dubinin-Radushkevich model confirmed the physical adsorption. Negative AG' values for MWCNT-Chi and positive ones for MWCNTCOOH indicated the nature of spontaneous and unspontaneous, respectively for adsorption process in the range of the studied concentrations. In addition, picric acid molecules can be desorbed from MWCNT-Chi up to 90% at pH = 9 and that the consumed MWCNT-Chi could be reutilized up to 5th cycle of regeneration. (C) 2017 Elsevier B.V. All rights reserved.