Exercise and mitochondrial mechanisms in patients with sarcopenia

被引:29
作者
Pahlavani, Hamed Alizadeh [1 ]
Laher, Ismail [2 ]
Knechtle, Beat [3 ,4 ]
Zouhal, Hassane [5 ,6 ]
机构
[1] Farhangian Univ, Dept Phys Educ, Tehran, Iran
[2] Univ British Columbia, Fac Med, Dept Anesthesiol Pharmacol & Therapeut, Vancouver, BC, Canada
[3] Univ Zurich, Inst Primary Care, Zurich, Switzerland
[4] Medbase St Gallen Vadianpl, St Gallen, Switzerland
[5] Univ Rennes 2, Movement Sport Hlth & Sci Lab UFR M2S, STAPS, ENS Cachan, Rennes, France
[6] Inst Int Sci Sport 2IS, Irodouer, France
关键词
exercise; sarcopenia; mitochondria; mechanism; aging; SKELETAL-MUSCLE; ENDURANCE EXERCISE; CATALASE ACTIVITY; OXIDATIVE DAMAGE; GENE-EXPRESSION; QUALITY-CONTROL; AUTOPHAGY; MITOPHAGY; ADAPTATIONS; INCREASES;
D O I
10.3389/fphys.2022.1040381
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Sarcopenia is a severe loss of muscle mass and functional decline during aging that can lead to reduced quality of life, limited patient independence, and increased risk of falls. The causes of sarcopenia include inactivity, oxidant production, reduction of antioxidant defense, disruption of mitochondrial activity, disruption of mitophagy, and change in mitochondrial biogenesis. There is evidence that mitochondrial dysfunction is an important cause of sarcopenia. Oxidative stress and reduction of antioxidant defenses in mitochondria form a vicious cycle that leads to the intensification of mitochondrial separation, suppression of mitochondrial fusion/fission, inhibition of electron transport chain, reduction of ATP production, an increase of mitochondrial DNA damage, and mitochondrial biogenesis disorder. On the other hand, exercise adds to the healthy mitochondrial network by increasing markers of mitochondrial fusion and fission, and transforms defective mitochondria into efficient mitochondria. Sarcopenia also leads to a decrease in mitochondrial dynamics, mitophagy markers, and mitochondrial network efficiency by increasing the level of ROS and apoptosis. In contrast, exercise increases mitochondrial biogenesis by activating genes affected by PGC1-alpha (such as CaMK, AMPK, MAPKs) and altering cellular calcium, ATP-AMP ratio, and cellular stress. Activation of PGC1-alpha also regulates transcription factors (such as TFAM, MEFs, and NRFs) and leads to the formation of new mitochondrial networks. Hence, moderate-intensity exercise can be used as a non-invasive treatment for sarcopenia by activating pathways that regulate the mitochondrial network in skeletal muscle.
引用
收藏
页数:18
相关论文
共 129 条
[1]   Skeletal muscle specific overexpression of the mitochondrial H2O2 scavenger, peroxiredoxin 3, rescues mitochondrial dysfunction and sarcopenia phenotypes elicited by redox imbalance [J].
Ahn, Bumsoo ;
Ranjit, Rojina ;
Piekarz, Katarzyna ;
Poopal, Ashiwini ;
Bian, Jan ;
Sataranatarajan, Kavithalakshmi ;
Ran, Qitao ;
Van Remmen, Holly .
FREE RADICAL BIOLOGY AND MEDICINE, 2018, 128 :S123-S123
[2]   Exercise Therapy for People With Sarcopenic Obesity: Myokines and Adipokines as Effective Actors [J].
Alizadeh Pahlavani, Hamed .
FRONTIERS IN ENDOCRINOLOGY, 2022, 13
[3]   Mitochondria Initiate and Regulate Sarcopenia [J].
Alway, Stephen E. ;
Mohamed, Junaith S. ;
Myers, Matthew J. .
EXERCISE AND SPORT SCIENCES REVIEWS, 2017, 45 (02) :58-69
[4]   Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1 [J].
Baar, K ;
Wende, AR ;
Jones, TE ;
Marison, M ;
Nolte, LA ;
Chen, M ;
Kelly, DP ;
Holloszy, JO .
FASEB JOURNAL, 2002, 16 (14) :1879-1886
[5]   Regular Endurance Exercise Promotes Fission, Mitophagy, and Oxidative Phosphorylation in Human Skeletal Muscle Independently of Age [J].
Balan, Estelle ;
Schwalm, Celine ;
Naslain, Damien ;
Nielens, Henri ;
Francaux, Marc ;
Deldicque, Louise .
FRONTIERS IN PHYSIOLOGY, 2019, 10
[6]   Nitrosative Redox Homeostasis and Antioxidant Response Defense in Disused Vastus lateralis Muscle in Long-Term Bedrest (Toulouse Cocktail Study) [J].
Blottner, Dieter ;
Capitanio, Daniele ;
Trautmann, Gabor ;
Furlan, Sandra ;
Gambara, Guido ;
Moriggi, Manuela ;
Block, Katharina ;
Barbacini, Pietro ;
Torretta, Enrica ;
Py, Guillaume ;
Chopard, Angele ;
Vida, Imre ;
Volpe, Pompeo ;
Gelfi, Cecilia ;
Salanova, Michele .
ANTIOXIDANTS, 2021, 10 (03) :1-24
[7]   Training alters the skeletal muscle antioxidative capacity in non-insulin-dependent type 2 diabetic men [J].
Brinkmann, C. ;
Chung, N. ;
Schmidt, U. ;
Kreutz, T. ;
Lenzen, E. ;
Schiffer, T. ;
Geisler, S. ;
Graf, C. ;
Montiel-Garcia, G. ;
Renner, R. ;
Bloch, W. ;
Brixius, K. .
SCANDINAVIAN JOURNAL OF MEDICINE & SCIENCE IN SPORTS, 2012, 22 (04) :462-470
[8]   Late life maintenance and enhancement of functional exercise capacity in low and high responding rats after low intensity treadmill training [J].
Brown, Lemuel A. ;
Macpherson, Peter C. ;
Koch, Lauren G. ;
Qi, Nathan R. ;
Britton, Steven L. ;
Brooks, Susan, V .
EXPERIMENTAL GERONTOLOGY, 2019, 125
[9]   Altered skeletal muscle mitochondrial biogenesis but improved endurance capacity in trained OPA1-deficient mice [J].
Caffin, F. ;
Prola, A. ;
Piquereau, J. ;
Novotova, M. ;
David, D. J. ;
Garnier, A. ;
Fortin, D. ;
Alavi, M. V. ;
Veksler, V. ;
Ventura-Clapier, R. ;
Joubert, F. .
JOURNAL OF PHYSIOLOGY-LONDON, 2013, 591 (23) :6017-6037
[10]   Mitochondrial pathways in sarcopenia of aging and disuse muscle atrophy [J].
Calvani, Riccardo ;
Joseph, Anna-Maria ;
Adhihetty, Peter J. ;
Miccheli, Alfredo ;
Bossola, Maurizio ;
Leeuwenburgh, Christiaan ;
Bernabei, Roberto ;
Marzetti, Emanuele .
BIOLOGICAL CHEMISTRY, 2013, 394 (03) :393-414