Numerical Simulation of Planar Heterojunction Perovskite Solar Cells Based on SnO2 Electron Transport Layer

被引:104
|
作者
Zhao, Peng [1 ]
Lin, Zhenhua [1 ]
Wang, Jiaping [1 ]
Yue, Man [1 ]
Su, Jie [1 ]
Zhang, Jincheng [1 ,2 ]
Chang, Jingjing [1 ,2 ]
Hao, Yue [1 ,2 ]
机构
[1] Xidian Univ, Sch Microelect, State Key Discipline Lab Wide Band Gap Semicond T, Shaanxi Joint Key Lab Graphene, 2 South Taibai Rd, Xian 710071, Shaanxi, Peoples R China
[2] Xidian Univ, Adv Interdisciplinary Res Ctr Flexible Elect, Xian 710071, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
perovskite solar cell; SnO2 electron transport layer; numerical simulation; band offset; electrode work function; CARRIER LIFETIME; PERFORMANCE; EFFICIENT; INTERFACE; CONTACT; SILICON;
D O I
10.1021/acsaem.9b00755
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The perovskite solar cells attracted great attention owing to their low cost and high performance. SnO2 as electron transport layer has been mostly used in the perovskite solar cells due to its excellent properties, such as good antireflection, suitable band edge position, and high electron mobility. In this study, the effects of band offsets, electrode work function, perovskite layer thickness, and electron mobility of SnO2 were investigated on the performance of perovskite solar cells. According to the results, the power conversion efficiency (PCE) was first enlarged with the increasing thickness of perovskite layer and then became saturated when the perovskite layer thickness was larger than 500 nm. The optimum conduction band offset (CBO = E-c_(ETL) - E-c_(perovskite)) and valence band offset (VBO = E-v_(HTL) - E-v_(perovskite)) were -0.1 to 0.4 eV and -0.1 to 0.1 eV, respectively. The optimal PCE was achieved when cathode electrode work function (Phi(cathode)) was larger than -4.8 eV and anode electrode work function (Phi(anode)) was smaller than -5.2 eV due to increased built-in voltage and carrier extraction. Moreover, the optimal PCE can be obtained when electron mobility of SnO2 was greater than 10(-3) cm(2)/(V s). This work would provide guidance to develop high performance perovskite solar cells.
引用
收藏
页码:4504 / 4512
页数:17
相关论文
共 50 条
  • [31] UV Treatment of Low-Temperature Processed SnO2 Electron Transport Layers for Planar Perovskite Solar Cells
    Li, Fumin
    Xu, Mengqi
    Ma, Xingping
    Shen, Liang
    Zhu, Liangxin
    Weng, Yujuan
    Yue, Gentian
    Tan, Furui
    Chen, Chong
    NANOSCALE RESEARCH LETTERS, 2018, 13
  • [32] Impact of Substrate on the SnO2 Electron Transport Layers and the Perovskite Solar Cells Performance
    Ulfa, Maria
    Budiawan, Widhya
    Bin Rus, Yandi
    Milana, Phutri
    Nursam, Natalita Maulani
    2024 INTERNATIONAL CONFERENCE ON RADAR, ANTENNA, MICROWAVE, ELECTRONICS, AND TELECOMMUNICATIONS, ICRAMET 2024, 2024, : 125 - 129
  • [33] Graphdiyne oxide doped SnO2 electron transport layer for high performance perovskite solar cells
    Yao, Lili
    Zhao, Min
    Liu, Le
    Chen, Siqi
    Wang, Jin
    Zhao, Chengjie
    Jia, Zhiyu
    Pang, Shuping
    Guo, Xin
    Jiu, Tonggang
    MATERIALS CHEMISTRY FRONTIERS, 2021, 5 (18) : 6913 - 6922
  • [34] Solvent engineering of SnO2 electron transport layer for high-performance perovskite solar cells
    Zhang, Shufang
    Jia, Xiangrui
    Geng, Quanming
    He, Zhengyan
    Hu, Yanqiang
    Gao, Yushuang
    Yang, Shuo
    Yao, Changlin
    Zhang, Qi
    Wang, Dehua
    Wu, Yunyi
    SURFACES AND INTERFACES, 2023, 41
  • [35] Solution-Processed SnO2 Quantum Dots for the Electron Transport Layer of Flexible and Printed Perovskite Solar Cells
    Kiani, Muhammad Salman
    Sadirkhanov, Zhandos T.
    Kakimov, Alibek G.
    Parkhomenko, Hryhorii P.
    Ng, Annie
    Jumabekov, Askhat N.
    NANOMATERIALS, 2022, 12 (15)
  • [36] Modification of SnO2 electron transport Layer: Brilliant strategies to make perovskite solar cells stronger
    Huang, Shumin
    Li, Peiyu
    Wang, Jing
    Huang, Jacob Chih-Ching
    Xue, Qifan
    Fu, Nianqing
    CHEMICAL ENGINEERING JOURNAL, 2022, 439
  • [37] Enhancing efficiency and stability of perovskite solar cells through methoxyamine hydrochloride modified SnO2 electron transport layer
    Chen, Pengxu
    Pan, Weichun
    Wang, Shibo
    Zheng, Qingshui
    Tong, Anling
    He, Ruowei
    Wu, Jihuai
    Sun, Weihai
    Li, Yunlong
    CHEMICAL ENGINEERING JOURNAL, 2024, 488
  • [38] Gadolinium-doped SnO2 electron transfer layer for highly efficient planar perovskite solar cells
    Wang, Renjie
    Wu, Jionghua
    Wei, Shuping
    Zhu, Jingwei
    Guo, Minghuang
    Zheng, Qiao
    Wei, Mingdeng
    Cheng, Shuying
    JOURNAL OF POWER SOURCES, 2022, 544
  • [39] TiO2/SnO2 electron transport layer by electron beam deposition for perovskite solar cell application
    Yu, Xianhuan
    Raifuku, Itaru
    Kawanishi, Hidenori
    Uraoka, Yukiharu
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2025, 64 (03)
  • [40] Effects of potassium treatment on SnO2 electron transport layers for improvements of perovskite solar cells
    Kim, SeongYeon
    Zhang, Fei
    Tong, Jinhui
    Chen, Xihan
    Enkhbayar, Enkhjargal
    Zhu, Kai
    Kim, JunHo
    SOLAR ENERGY, 2022, 233 : 353 - 362