Numerical Simulation of Planar Heterojunction Perovskite Solar Cells Based on SnO2 Electron Transport Layer

被引:113
作者
Zhao, Peng [1 ]
Lin, Zhenhua [1 ]
Wang, Jiaping [1 ]
Yue, Man [1 ]
Su, Jie [1 ]
Zhang, Jincheng [1 ,2 ]
Chang, Jingjing [1 ,2 ]
Hao, Yue [1 ,2 ]
机构
[1] Xidian Univ, Sch Microelect, State Key Discipline Lab Wide Band Gap Semicond T, Shaanxi Joint Key Lab Graphene, 2 South Taibai Rd, Xian 710071, Shaanxi, Peoples R China
[2] Xidian Univ, Adv Interdisciplinary Res Ctr Flexible Elect, Xian 710071, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
perovskite solar cell; SnO2 electron transport layer; numerical simulation; band offset; electrode work function; CARRIER LIFETIME; PERFORMANCE; EFFICIENT; INTERFACE; CONTACT; SILICON;
D O I
10.1021/acsaem.9b00755
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The perovskite solar cells attracted great attention owing to their low cost and high performance. SnO2 as electron transport layer has been mostly used in the perovskite solar cells due to its excellent properties, such as good antireflection, suitable band edge position, and high electron mobility. In this study, the effects of band offsets, electrode work function, perovskite layer thickness, and electron mobility of SnO2 were investigated on the performance of perovskite solar cells. According to the results, the power conversion efficiency (PCE) was first enlarged with the increasing thickness of perovskite layer and then became saturated when the perovskite layer thickness was larger than 500 nm. The optimum conduction band offset (CBO = E-c_(ETL) - E-c_(perovskite)) and valence band offset (VBO = E-v_(HTL) - E-v_(perovskite)) were -0.1 to 0.4 eV and -0.1 to 0.1 eV, respectively. The optimal PCE was achieved when cathode electrode work function (Phi(cathode)) was larger than -4.8 eV and anode electrode work function (Phi(anode)) was smaller than -5.2 eV due to increased built-in voltage and carrier extraction. Moreover, the optimal PCE can be obtained when electron mobility of SnO2 was greater than 10(-3) cm(2)/(V s). This work would provide guidance to develop high performance perovskite solar cells.
引用
收藏
页码:4504 / 4512
页数:17
相关论文
共 39 条
[11]   Optimizing CdTe Solar Cell Performance: Impact of Variations in Minority-Carrier Lifetime and Carrier Density Profile [J].
Kanevce, Ana ;
Gessert, Timothy A. .
IEEE JOURNAL OF PHOTOVOLTAICS, 2011, 1 (01) :99-103
[12]   Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% [J].
Kim, Hui-Seon ;
Lee, Chang-Ryul ;
Im, Jeong-Hyeok ;
Lee, Ki-Beom ;
Moehl, Thomas ;
Marchioro, Arianna ;
Moon, Soo-Jin ;
Humphry-Baker, Robin ;
Yum, Jun-Ho ;
Moser, Jacques E. ;
Graetzel, Michael ;
Park, Nam-Gyu .
SCIENTIFIC REPORTS, 2012, 2
[13]   Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells [J].
Kojima, Akihiro ;
Teshima, Kenjiro ;
Shirai, Yasuo ;
Miyasaka, Tsutomu .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (17) :6050-+
[14]   Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites [J].
Lee, Michael M. ;
Teuscher, Joel ;
Miyasaka, Tsutomu ;
Murakami, Takurou N. ;
Snaith, Henry J. .
SCIENCE, 2012, 338 (6107) :643-647
[15]   Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells [J].
Leijtens, Tomas ;
Eperon, Giles E. ;
Pathak, Sandeep ;
Abate, Antonio ;
Lee, Michael M. ;
Snaith, Henry J. .
NATURE COMMUNICATIONS, 2013, 4
[16]   High-Performance Planar Perovskite Solar Cells Using Low Temperature, Solution-Combustion-Based Nickel Oxide Hole Transporting Layer with Efficiency Exceeding 20% [J].
Liu, Ziye ;
Chang, Jingjing ;
Lin, Zhenhua ;
Zhou, Long ;
Yang, Zhou ;
Chen, Dazheng ;
Zhang, Chunfu ;
Liu, Shengzhong ;
Hao, Yue .
ADVANCED ENERGY MATERIALS, 2018, 8 (19)
[17]   Enhanced Planar Perovskite Solar Cell Performance via Contact Passivation of TiO2/Perovskite Interface with NaCl Doping Approach [J].
Ma, Jing ;
Guo, Xing ;
Zhou, Long ;
Lin, Zhenhua ;
Zhang, Chunfu ;
Yang, Zhou ;
Lu, Gang ;
Chang, Jingjing ;
Hao, Yue .
ACS APPLIED ENERGY MATERIALS, 2018, 1 (08) :3826-3834
[18]   A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells [J].
McMeekin, David P. ;
Sadoughi, Golnaz ;
Rehman, Waqaas ;
Eperon, Giles E. ;
Saliba, Michael ;
Hoerantner, Maximilian T. ;
Haghighirad, Amir ;
Sakai, Nobuya ;
Korte, Lars ;
Rech, Bernd ;
Johnston, Michael B. ;
Herz, Laura M. ;
Snaith, Henry J. .
SCIENCE, 2016, 351 (6269) :151-155
[19]   Buffer-less Cu(In,Ga)Se2 solar cells by band offset control using novel transparent electrode [J].
Minemoto, Takashi ;
Julayhi, Jasmeen .
CURRENT APPLIED PHYSICS, 2013, 13 (01) :103-106
[20]   Device simulation of CH3NH3PbI3 perovskite/heterojunction crystalline silicon monolithic tandem solar cells using an n-type a-Si:H/p-type μc-Si1-xOx:H tunnel junction [J].
Nakanishi, Akira ;
Takiguchi, Yuki ;
Miyajima, Shinsuke .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2016, 213 (07) :1997-2002