Numerical Simulation of Planar Heterojunction Perovskite Solar Cells Based on SnO2 Electron Transport Layer

被引:113
作者
Zhao, Peng [1 ]
Lin, Zhenhua [1 ]
Wang, Jiaping [1 ]
Yue, Man [1 ]
Su, Jie [1 ]
Zhang, Jincheng [1 ,2 ]
Chang, Jingjing [1 ,2 ]
Hao, Yue [1 ,2 ]
机构
[1] Xidian Univ, Sch Microelect, State Key Discipline Lab Wide Band Gap Semicond T, Shaanxi Joint Key Lab Graphene, 2 South Taibai Rd, Xian 710071, Shaanxi, Peoples R China
[2] Xidian Univ, Adv Interdisciplinary Res Ctr Flexible Elect, Xian 710071, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
perovskite solar cell; SnO2 electron transport layer; numerical simulation; band offset; electrode work function; CARRIER LIFETIME; PERFORMANCE; EFFICIENT; INTERFACE; CONTACT; SILICON;
D O I
10.1021/acsaem.9b00755
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The perovskite solar cells attracted great attention owing to their low cost and high performance. SnO2 as electron transport layer has been mostly used in the perovskite solar cells due to its excellent properties, such as good antireflection, suitable band edge position, and high electron mobility. In this study, the effects of band offsets, electrode work function, perovskite layer thickness, and electron mobility of SnO2 were investigated on the performance of perovskite solar cells. According to the results, the power conversion efficiency (PCE) was first enlarged with the increasing thickness of perovskite layer and then became saturated when the perovskite layer thickness was larger than 500 nm. The optimum conduction band offset (CBO = E-c_(ETL) - E-c_(perovskite)) and valence band offset (VBO = E-v_(HTL) - E-v_(perovskite)) were -0.1 to 0.4 eV and -0.1 to 0.1 eV, respectively. The optimal PCE was achieved when cathode electrode work function (Phi(cathode)) was larger than -4.8 eV and anode electrode work function (Phi(anode)) was smaller than -5.2 eV due to increased built-in voltage and carrier extraction. Moreover, the optimal PCE can be obtained when electron mobility of SnO2 was greater than 10(-3) cm(2)/(V s). This work would provide guidance to develop high performance perovskite solar cells.
引用
收藏
页码:4504 / 4512
页数:17
相关论文
共 39 条
[1]   Tunneling-Assisted Trapping as one of the Possible Mechanisms for the Origin of Hysteresis in Perovskite Solar Cells [J].
Almosni, Samy ;
Cojocaru, Ludmila ;
Li, Debin ;
Uchida, Satoshi ;
Kubo, Takaya ;
Segawa, Hiroshi .
ENERGY TECHNOLOGY, 2017, 5 (10) :1767-1774
[2]   Semi-transparent perovskite solar cells for tandems with silicon and CIGS [J].
Bailie, Colin D. ;
Christoforo, M. Greyson ;
Mailoa, Jonathan P. ;
Bowring, Andrea R. ;
Unger, Eva L. ;
Nguyen, William H. ;
Burschka, Julian ;
Pellet, Norman ;
Lee, Jungwoo Z. ;
Graetzel, Michael ;
Noufi, Rommel ;
Buonassisi, Tonio ;
Salleo, Alberto ;
McGehee, Michael D. .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (03) :956-963
[3]   Accounting for Interference, Scattering, and Electrode Absorption to Make Accurate Internal Quantum Efficiency Measurements in Organic and Other Thin Solar Cells [J].
Burkhard, George F. ;
Hoke, Eric T. ;
McGehee, Michael D. .
ADVANCED MATERIALS, 2010, 22 (30) :3293-+
[4]   Sequential deposition as a route to high-performance perovskite-sensitized solar cells [J].
Burschka, Julian ;
Pellet, Norman ;
Moon, Soo-Jin ;
Humphry-Baker, Robin ;
Gao, Peng ;
Nazeeruddin, Mohammad K. ;
Graetzel, Michael .
NATURE, 2013, 499 (7458) :316-+
[5]   Enhancing the photovoltaic performance of planar heterojunction perovskite solar cells by doping the perovskite layer with alkali metal ions [J].
Chang, Jingjing ;
Lin, Zhenhua ;
Zhu, Hai ;
Isikgor, Furkan Halis ;
Xu, Qing-Hua ;
Zhang, Chunfu ;
Hao, Yue ;
Ouyang, Jianyong .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (42) :16546-16552
[6]   Enhancing the planar heterojunction perovskite solar cell performance through tuning the precursor ratio [J].
Chang, Jingjing ;
Zhu, Hai ;
Xiao, Juanxiu ;
Isikgor, Furkan Halis ;
Lin, Zhenhua ;
Hao, Yue ;
Zeng, Kaiyang ;
Xu, Qing-Hua ;
Ouyang, Jianyong .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (20) :7943-7949
[7]   Boosting the performance of planar heterojunction perovskite solar cell by controlling the precursor purity of perovskite materials [J].
Chang, Jingjing ;
Zhu, Hai ;
Li, Bichen ;
Isikgor, Furkan Halis ;
Hao, Yue ;
Xu, Qinghua ;
Ouyang, Jianyong .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (03) :887-893
[8]   6.5% efficient perovskite quantum-dot-sensitized solar cell [J].
Im, Jeong-Hyeok ;
Lee, Chang-Ryul ;
Lee, Jin-Wook ;
Park, Sang-Won ;
Park, Nam-Gyu .
NANOSCALE, 2011, 3 (10) :4088-4093
[9]   Compositional engineering of perovskite materials for high-performance solar cells [J].
Jeon, Nam Joong ;
Noh, Jun Hong ;
Yang, Woon Seok ;
Kim, Young Chan ;
Ryu, Seungchan ;
Seo, Jangwon ;
Seok, Sang Il .
NATURE, 2015, 517 (7535) :476-+
[10]  
Jiang Q, 2017, NAT ENERGY, V2, P1, DOI [10.1038/nenergy.2016.177, 10.1038/NENERGY.2016.177]