Interior estimates for the wavelet Galerkin method

被引:14
作者
Bertoluzza, S
机构
[1] Ist. di Analisi Numerica del C.N.R., I-27100 Pavia
关键词
Mathematics Subject Classification (1991):65N15, 65N30;
D O I
10.1007/s002110050301
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we derive an interior estimate for the Galerkin method with wavelet-type basis, Such an estimate follows from interior Galerkin equations which are common to a class of methods used in the solution of elliptic boundary value problems. We show that the error in an interior domain Omega(0) can be estimated with the best order of accuracy possible, provided the solution ii is sufficiently regular in a slightly larger domain, and that an estimate of the same order exists for the error in a weaker norm (measuring the effects from outside the domain Omega(0)). Examples of the application of such an estimate are given for different problems.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 21 条
  • [1] FINITE-ELEMENT METHOD WITH LAGRANGIAN MULTIPLIERS
    BABUSKA, I
    [J]. NUMERISCHE MATHEMATIK, 1973, 20 (03) : 179 - 192
  • [2] Bergh J., 1976, INTERPOLATION SPACES
  • [3] BERTOLUZZA S, 1994, WAVELETS THEORY ALGO
  • [4] BRAMBLE JH, 1973, MATH COMPUT, V27, P525, DOI 10.1090/S0025-5718-1973-0366029-9
  • [5] Brezzi F., 2012, MIXED HYBRID FINITE, V15
  • [6] Ciarlet PG., 1978, The Finite Element Method for Elliptic Problems
  • [7] Cohen A., 1993, Applied and Computational Harmonic Analysis, V1, P54, DOI 10.1006/acha.1993.1005
  • [8] BIORTHOGONAL BASES OF COMPACTLY SUPPORTED WAVELETS
    COHEN, A
    DAUBECHIES, I
    FEAUVEAU, JC
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (05) : 485 - 560
  • [9] COHEN A, 1995, MULTISCALE DECOMPOSI
  • [10] MULTILEVEL PRECONDITIONING
    DAHMEN, W
    KUNOTH, A
    [J]. NUMERISCHE MATHEMATIK, 1992, 63 (03) : 315 - 344