Leading coefficients of Kazhdan-Lusztig polynomials for Deodhar elements

被引:5
作者
Jones, Brant C. [1 ]
机构
[1] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
关键词
Kazhdan-Lusztig polynomial; 321-hexagon; 0-1; conjecture; Pattern avoidance; FULLY COMMUTATIVE ELEMENTS; SCHUBERT VARIETIES; COXETER GROUPS; ACYCLIC HEAPS; PIECES;
D O I
10.1007/s10801-008-0131-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the leading coefficient of the Kazhdan-Lusztig polynomial P (x,w) (q) known as mu(x,w) is always either 0 or 1 when w is a Deodhar element of a finite Weyl group. The Deodhar elements have previously been characterized using pattern avoidance in Billey and Warrington (J. Algebraic Combin. 13(2):111-136, [2001]) and Billey and Jones (Ann. Comb. [2008], to appear). In type A, these elements are precisely the 321-hexagon avoiding permutations. Using Deodhar's algorithm (Deodhar in Geom. Dedicata 63(1):95-119, [1990]), we provide some combinatorial criteria to determine when mu(x,w)=1 for such permutations w.
引用
收藏
页码:229 / 260
页数:32
相关论文
共 24 条