Cluster synchronization transmission of different external signals in discrete uncertain network

被引:11
作者
Li, Chengren [1 ]
Lu, Ling [1 ]
Chen, Liansong [1 ]
Hong, Yixuan [1 ]
Zhou, Shuang [1 ]
Yang, Yiming [1 ]
机构
[1] Liaoning Normal Univ, Sch Phys & Elect Technol, Dalian 116029, Peoples R China
关键词
Cluster synchronization; Discrete uncertain network; Parameter identification; Lyapunov theorem; COMPLEX NETWORKS; PROJECTIVE SYNCHRONIZATION; PINNING CONTROL; STABILITY;
D O I
10.1016/j.physa.2018.02.156
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We research cluster synchronization transmissions of different external signals in discrete uncertain network. Based on the Lyapunov theorem, the network controller and the identification law of uncertain adjustment parameter are designed, and they are efficiently used to achieve the cluster synchronization and the identification of uncertain adjustment parameter. In our technical scheme, the network nodes in each cluster and the transmitted external signal can be different, and they allow the presence of uncertain parameters in the network. Especially, we are free to choose the clustering topologies, the cluster number and the node number in each cluster. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:238 / 247
页数:10
相关论文
共 30 条
  • [1] Al-Mahbashi G., 2014, INT J MOD PHYS C, V25, P771
  • [2] Projective synchronization of fractional-order memristor-based neural networks
    Bao, Hai-Bo
    Cao, Jin-De
    [J]. NEURAL NETWORKS, 2015, 63 : 1 - 9
  • [3] Emergence of scaling in random networks
    Barabási, AL
    Albert, R
    [J]. SCIENCE, 1999, 286 (5439) : 509 - 512
  • [4] Robust synchronization of a class of chaotic networks
    Celikovsky, S.
    Lynnyk, V.
    Chen, G.
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2013, 350 (10): : 2936 - 2948
  • [5] Synchronization in complex networks of phase oscillators: A survey
    Doerfler, Florian
    Bullo, Francesco
    [J]. AUTOMATICA, 2014, 50 (06) : 1539 - 1564
  • [6] Pinning control for synchronization of nonlinear complex dynamical network with suboptimal SDRE controllers
    Ghaffari, Ali
    Arebi, Soleyman
    [J]. NONLINEAR DYNAMICS, 2016, 83 (1-2) : 1003 - 1013
  • [7] The Lyapunov-Krasovskii theorem and a sufficient criterion for local stability of isochronal synchronization in networks of delay-coupled oscillators
    Grzybowski, J. M. V.
    Macau, E. E. N.
    Yoneyama, T.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2017, 346 : 28 - 36
  • [8] Cluster synchronization in nonlinear complex networks under sliding mode control
    Hou, Huazhou
    Zhang, Qingling
    Zheng, Meng
    [J]. NONLINEAR DYNAMICS, 2016, 83 (1-2) : 739 - 749
  • [9] Interplay of degree correlations and cluster synchronization
    Jalan, Sarika
    Kumar, Anil
    Zaikin, Alexey
    Kurths, Juergen
    [J]. PHYSICAL REVIEW E, 2016, 94 (06)
  • [10] Impact of a leader on cluster synchronization
    Jalan, Sarika
    Singh, Aradhana
    Acharyya, Suman
    Kurths, Juergen
    [J]. PHYSICAL REVIEW E, 2015, 91 (02):