Explicit parallel two-step Runge-Kutta-Nystrom methods

被引:15
作者
Cong, NH [1 ]
机构
[1] UNIV HANOI,FAC MATH MECH & INFORMAT,HANOI,VIETNAM
关键词
Runge-Kutta-Nystrom methods; predictor-corrector methods; parallelism;
D O I
10.1016/0898-1221(96)00117-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to design a class of two-step Runge-Kutta-Nystrom methods of arbitrarily high order for the special second-order equation y ''(t) = f(y(t)), for use on parallel computers. Starting with an s-stage implicit two-step Runge-Kutta-Nystrom method of order p with k = p/2 implicit stages, we apply the highly parallel predictor-corrector iteration process in P(EC)(m)E mode. In this way, we obtain an explicit two-step Runge-Kutta-Nystrom method that has order p for all m and that requires k(m + 1) right-hand side evaluations per step of which each Ic evaluation can be computed in parallel. By a number of numerical experiments, we show the superiority of the parallel predictor-corrector methods proposed in this paper over both sequential and parallel methods available in the literature.
引用
收藏
页码:119 / 130
页数:12
相关论文
共 19 条
[1]  
ABRAMOWITZ M, 1970, NBS APPLIED MATH SER, V55
[2]  
[Anonymous], 1975, INITIAL VALUE PROBLE
[3]  
CONG N, IN PRESS J COMP APPL
[4]  
CONG NH, 1993, J COMPUT APPL MATH, V45, P347, DOI 10.1016/0377-0427(93)90053-E
[5]  
CONG NH, UNPUB HIGHLY PARALLE
[6]  
CONG NH, 1993, NUMER ALGORITHMS, V4, P263
[7]   A 9TH ORDER RUNGE-KUTTA-NYSTROM FORMULA WITH STEPSIZE CONTROL FOR THE DIFFERENTIAL-EQUATIONS X-UMLAUT=F(T,X) [J].
FEHLBERG, E .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1981, 61 (10) :477-485
[8]   A PAIR OF RUNGE-KUTTA-NYSTROM FORMULAS FOR Y''=F(X,Y) [J].
FEHLBERG, E ;
FILIPPI, S ;
GRAF, J .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1986, 66 (07) :265-270
[9]   CLASSICAL RUNGE-KUTTA-NYSTROM-FORMULAS WITH STEP-SIZE CONTROL FOR DIFFERENTIAL EQUATIONS X=F (T,X) [J].
FEHLBERG, E .
COMPUTING, 1972, 10 (04) :305-315
[10]   A RUNGE-KUTTA-NYSTROM FORMULA-PAIR OF ORDER-11(12) FOR DIFFERENTIAL-EQUATIONS OF THE FORM Y''=F(X,Y) [J].
FILIPPI, S ;
GRAF, J .
COMPUTING, 1985, 34 (03) :271-282