APPROXIMATION BY LIPSCHITZ FUNCTIONS IN ABSTRACT SOBOLEV SPACES ON METRIC SPACES

被引:0
作者
Mocanu, Marcelina [1 ]
机构
[1] Vasile Alecsandri Univ Bacau, Dept Math & Informat, Bacau 600115, Romania
来源
MATHEMATICAL REPORTS | 2013年 / 15卷 / 04期
关键词
metric measure space; Banach function space; Newtonian space; Lipschitz functions; Sobolev capacity; quasicontinuity;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the density of locally Lipschitz functions in a global Sobolev space based on a Banach function space implies the density of Lipschitz functions, with compact support in a given open set, in the corresponding Sobolev space with zero boundary values. In the case, when the Banach function space is a Lebesgue space, we recover some density results of Bjorn, Bjorn and Shanmugalingam (2008). Our results require neither a doubling measure nor the validity of a Poincare inequality in the underlying metric measure space.
引用
收藏
页码:459 / 475
页数:17
相关论文
共 24 条
  • [1] Aissaoui N., 2004, ABSTR APPL ANAL, V2004, P1
  • [2] Aissaoui N., 2004, SW J PURE APPL MATH, V2004, P10
  • [3] [Anonymous], 2010, FUNCTIONAL ANAL
  • [4] [Anonymous], PURE APPL MATH
  • [5] Bennett C., 1988, PURE APPL MATH, V129
  • [6] Björn A, 2008, HOUSTON J MATH, V34, P1197
  • [7] Differentiability of Lipschitz functions on metric measure spaces
    Cheeger, J
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 1999, 9 (03) : 428 - 517
  • [8] Costea S., 2011, ARXIV11043475V2
  • [9] Hajasz P, 2003, CONT MATH, V338, P173
  • [10] Heinonen J., 2001, Lectures on analysis on metric spaces, DOI 10.1007/978-1-4613-0131-8