Itacitinib (INCB039110), a JAK1 Inhibitor, Reduces Cytokines Associated with Cytokine Release Syndrome Induced by CAR T-cell Therapy

被引:66
作者
Huarte, Eduardo [1 ]
O'Connor, Roddy S. [2 ,3 ]
Peel, Michael T. [1 ]
Nunez-Cruz, Selene [2 ,3 ]
Leferovich, John [2 ,3 ]
Juvekar, Ashish [1 ]
Yang, Yan-ou [1 ]
Truong, Lisa [1 ]
Huang, Taisheng [1 ]
Naim, Ahmad [4 ]
Milone, Michael C. [2 ,3 ]
Smith, Paul A. [1 ]
机构
[1] Incyte Res Inst, Wilmington, DE 19803 USA
[2] Univ Penn, Dept Pathol & Lab Med, Perelman Sch Med, Philadelphia, PA USA
[3] Univ Penn, Ctr Cellular Immunotherapies, Perelman Sch Med, Philadelphia, PA 19104 USA
[4] Incyte Corp, Wilmington, DE USA
关键词
MONOCLONAL-ANTIBODY; MICE; TOCILIZUMAB; POPULATION; TOXICITIES; COVID-19; DISEASE;
D O I
10.1158/1078-0432.CCR-20-1739
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: T cells engineered to express a chimeric antigen receptor (CAR) are a promising cancer immunotherapy. Such targeted therapies have shown long-term relapse-free survival in patients with B-cell leukemia and lymphoma. However, cytokine release syndrome (CRS) represents a serious, potentially life-threatening side effect often associated with CAR T-cell therapy. CRS manifests as a rapid (hyper)immune reaction driven by excessive inflammatory cytokine release, including IFN gamma and IL6. Experimental Design: Many cytokines implicated in CRS are known to signal through the JAK-STAT pathway. Here we study the effect of blocking JAK pathway signaling on CART-cell proliferation, antitumor activity, and cytokine levels in in vitro and in vivo models. Results: We report that itacitinib, a potent, selective JAK1 inhibitor, was able to significantly and dose-dependently reduce levels of multiple cytokines implicated in CRS in several in vitro and in vivo models. Importantly, we also report that at clinically relevant doses that mimic human JAK1 pharmacologic inhibition, itacitinib did not significantly inhibit proliferation or antitumor killing capacity of three different human CAR T-cell constructs (GD2, EGFR, and CD19). Finally, in an in vivo model, antitumor activity of CD19-CAR T cells adoptively transferred into CD19(+) tumorbearing immunodeficient animals was unabated by oral itacitinib treatment. Conclusions: Together, these data suggest that itacitinib has potential as a prophylactic agent for the prevention of CAR T cellinduced CRS, and a phase II clinical trial of itacitinib for prevention of CRS induced by CAR T-cell therapy has been initiated (NCT04071366).
引用
收藏
页码:6299 / 6309
页数:11
相关论文
共 52 条
  • [31] Chimeric Antigen Receptor T Cells for Sustained Remissions in Leukemia
    Maude, Shannon L.
    Frey, Noelle
    Shaw, Pamela A.
    Aplenc, Richard
    Barrett, David M.
    Bunin, Nancy J.
    Chew, Anne
    Gonzalez, Vanessa E.
    Zheng, Zhaohui
    Lacey, Simon F.
    Mahnke, Yolanda D.
    Melenhorst, Jan J.
    Rheingold, Susan R.
    Shen, Angela
    Teachey, David T.
    Levine, Bruce L.
    June, Carl H.
    Porter, David L.
    Grupp, Stephan A.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2014, 371 (16) : 1507 - 1517
  • [32] Managing Cytokine Release Syndrome Associated With Novel T Cell-Engaging Therapies
    Maude, Shannon L.
    Barrett, David
    Teachey, David T.
    Grupp, Stephan A.
    [J]. CANCER JOURNAL, 2014, 20 (02) : 119 - 122
  • [33] COVID-19: consider cytokine storm syndromes and immunosuppression
    Mehta, Puja
    McAuley, Daniel F.
    Brown, Michael
    Sanchez, Emilie
    Tattersall, Rachel S.
    Manson, Jessica J.
    [J]. LANCET, 2020, 395 (10229) : 1033 - 1034
  • [34] Of mice and not men: Differences between mouse and human immunology
    Mestas, J
    Hughes, CCW
    [J]. JOURNAL OF IMMUNOLOGY, 2004, 172 (05) : 2731 - 2738
  • [35] MYOTONIC DYSTROPHY TYPE 2 WITH FOCAL ASYMMETRIC MUSCLE WEAKNESS AND NO ELECTRICAL MYOTONIA
    Milone, Margherita
    Batish, Sat D.
    Daube, Jasper R.
    [J]. MUSCLE & NERVE, 2009, 39 (03) : 383 - 385
  • [36] The JAK-STAT signaling pathway: Input and output intergration
    Murray, Peter J.
    [J]. JOURNAL OF IMMUNOLOGY, 2007, 178 (05) : 2623 - 2629
  • [37] Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma
    Neelapu, S. S.
    Locke, F. L.
    Bartlett, N. L.
    Lekakis, L. J.
    Miklos, D. B.
    Jacobson, C. A.
    Braunschweig, I.
    Oluwole, O. O.
    Siddiqi, T.
    Lin, Y.
    Timmerman, J. M.
    Stiff, P. J.
    Friedberg, J. W.
    Flinn, I. W.
    Goy, A.
    Hill, B. T.
    Smith, M. R.
    Deol, A.
    Farooq, U.
    McSweeney, P.
    Munoz, J.
    Avivi, I.
    Castro, J. E.
    Westin, J. R.
    Chavez, J. C.
    Ghobadi, A.
    Komanduri, K. V.
    Levy, R.
    Jacobsen, E. D.
    Witzig, T. E.
    Reagan, P.
    Bot, A.
    Rossi, J.
    Navale, L.
    Jiang, Y.
    Aycock, J.
    Elias, M.
    Chang, D.
    Wiezorek, J.
    Go, W. Y.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2017, 377 (26) : 2531 - 2544
  • [38] Managing the toxicities of CAR T-cell therapy
    Neelapu, Sattva S.
    [J]. HEMATOLOGICAL ONCOLOGY, 2019, 37 : 48 - 52
  • [39] Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells
    Norelli, Margherita
    Camisa, Barbara
    Barbiera, Giulia
    Falcone, Laura
    Purevdorj, Ayurzana
    Genua, Marco
    Sanvito, Francesca
    Ponzoni, Maurilio
    Doglioni, Claudio
    Cristofori, Patrizia
    Traversari, Catia
    Bordignon, Claudio
    Ciceri, Fabio
    Ostuni, Renato
    Bonini, Chiara
    Casucci, Monica
    Bondanza, Attilio
    [J]. NATURE MEDICINE, 2018, 24 (06) : 739 - +
  • [40] SOCS3 Deficiency Promotes M1 Macrophage Polarization and Inflammation
    Qin, Hongwei
    Holdbrooks, Andrew T.
    Liu, Yudong
    Reynolds, Stephanie L.
    Yanagisawa, Lora L.
    Benveniste, Etty N.
    [J]. JOURNAL OF IMMUNOLOGY, 2012, 189 (07) : 3439 - 3448