Breaking the chains: deubiquitylating enzyme specificity begets function

被引:536
作者
Clague, Michael J. [1 ]
Urbe, Sylvie [1 ]
Komander, David [2 ,3 ]
机构
[1] Univ Liverpool, Inst Translat Med, Cellular & Mol Physiol, Liverpool, Merseyside, England
[2] Walter & Eliza Hall Inst Med Res, Ubiquitin Signalling Div, Melbourne, Vic, Australia
[3] Univ Melbourne, Dept Med Biol, Melbourne, Vic 3010, Australia
基金
英国医学研究理事会;
关键词
NF-KAPPA-B; SMALL-MOLECULE INHIBITOR; SPATA2 LINKS CYLD; DEUBIQUITINATING ENZYME; UBIQUITIN LIGASE; LINEAR UBIQUITIN; CELL-PROLIFERATION; STRUCTURAL BASIS; HOMOLOGOUS RECOMBINATION; POLYUBIQUITIN CHAINS;
D O I
10.1038/s41580-019-0099-1
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The deubiquitylating enzymes (DUBs, also known as deubiquitylases or deubiquitinases) maintain the dynamic state of the cellular ubiquitome by releasing conjugated ubiquitin from proteins. In light of the many cellular functions of ubiquitin, DUBs occupy key roles in almost all aspects of cell behaviour. Many DUBs show selectivity for particular ubiquitin linkage types or positions within ubiquitin chains. Others show chain-type promiscuity but can select a distinct palette of protein substrates via specific protein-protein interactions established through binding modules outside of the catalytic domain. The ubiquitin chain cleavage mode or chain linkage specificity has been related directly to biological functions. Examples include regulation of protein degradation and ubiquitin recycling by the proteasome, DNA repair pathways and innate immune signalling. DUB cleavage specificity is also being harnessed for analysis of ubiquitin chain architecture that is assembled on specific proteins. The recent development of highly specific DUB inhibitors heralds their emergence as a new class of therapeutic targets for numerous diseases.
引用
收藏
页码:338 / 352
页数:15
相关论文
共 223 条
  • [1] Germline BAP1 mutation predisposes to uveal melanoma, lung adenocarcinoma, meningioma, and other cancers
    Abdel-Rahman, Mohamed H.
    Pilarski, Robert
    Cebulla, Colleen M.
    Massengill, James B.
    Christopher, Benjamin N.
    Boru, Getachew
    Hovland, Peter
    Davidorf, Frederick H.
    [J]. JOURNAL OF MEDICAL GENETICS, 2011, 48 (12) : 856 - 859
  • [2] Near-atomic resolution structural model of the yeast 26S proteasome
    Beck, Florian
    Unverdorben, Pia
    Bohn, Stefan
    Schweitzer, Andreas
    Pfeifer, Guenter
    Sakata, Eri
    Nickell, Stephan
    Plitzko, Juergen M.
    Villa, Elizabeth
    Baumeister, Wolfgang
    Foerster, Friedrich
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (37) : 14870 - 14875
  • [3] Identification of the familial cylindromatosis tumour-suppressor gene
    Bignell, GR
    Warren, W
    Seal, S
    Takahashi, M
    Rapley, E
    Barfoot, R
    Green, H
    Brown, C
    Biggs, PJ
    Lakhani, SR
    Jones, C
    Hansen, J
    Blair, E
    Hofmann, B
    Siebert, R
    Turner, G
    Evans, DG
    Schrander-Stumpel, C
    Beemer, FA
    van den Ouweland, A
    Halley, D
    Delpech, B
    Cleveland, MG
    Leigh, I
    Leisti, J
    Rasmussen, S
    Wallace, MR
    Fenske, C
    Banerjee, P
    Oiso, N
    Chaggar, R
    Merrett, S
    Leonard, N
    Huber, M
    Hohl, D
    Chapman, P
    Burn, J
    Swift, S
    Smith, A
    Ashworth, A
    Stratton, MR
    [J]. NATURE GENETICS, 2000, 25 (02) : 160 - 165
  • [4] The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy
    Bingol, Baris
    Tea, Joy S.
    Phu, Lilian
    Reichelt, Mike
    Bakalarski, Corey E.
    Song, Qinghua
    Foreman, Oded
    Kirkpatrick, Donald S.
    Sheng, Morgan
    [J]. NATURE, 2014, 510 (7505) : 370 - +
  • [5] Cezanne/OTUD7B is a cell cycle-regulated deubiquitinase that antagonizes the degradation of APC/C substrates
    Bonacci, Thomas
    Suzuki, Aussie
    Grant, Gavin D.
    Stanley, Natalie
    Cook, Jeanette G.
    Brown, Nicholas G.
    Emanuele, Michael J.
    [J]. EMBO JOURNAL, 2018, 37 (16)
  • [6] Zinc-finger UBPs: regulators of deubiquitylation
    Bonnet, Jacques
    Romier, Christophe
    Tora, Laszlo
    Devys, Didier
    [J]. TRENDS IN BIOCHEMICAL SCIENCES, 2008, 33 (08) : 369 - 375
  • [7] The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses
    Boone, DL
    Turer, EE
    Lee, EG
    Ahmad, RC
    Wheeler, MT
    Tsui, C
    Hurley, P
    Chien, M
    Chai, S
    Hitotsumatsu, O
    McNally, E
    Pickart, C
    Ma, A
    [J]. NATURE IMMUNOLOGY, 2004, 5 (10) : 1052 - 1060
  • [8] Lys11-linked ubiquitin chains adopt compact conformations and are preferentially hydrolyzed by the deubiquitinase Cezanne
    Bremm, Anja
    Freund, Stefan M. V.
    Komander, David
    [J]. NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2010, 17 (08) : 939 - U47
  • [9] p53 ubiquitination: Mdm2 and beyond
    Brooks, CL
    Gu, W
    [J]. MOLECULAR CELL, 2006, 21 (03) : 307 - 315
  • [10] Dual RING E3 Architectures Regulate Multiubiquitination and Ubiquitin Chain Elongation by APC/C
    Brown, Nicholas G.
    VanderLinden, Ryan
    Watson, Edmond R.
    Weissmann, Florian
    Ordureau, Alban
    Wu, Kuen-Phon
    Zhang, Wei
    Yu, Shanshan
    Mercredi, Peter Y.
    Harrison, Joseph S.
    Davidson, Iain F.
    Qiao, Renping
    Lu, Ying
    Dube, Prakash
    Brunner, Michael R.
    Grace, Christy R. R.
    Miller, Darcie J.
    Haselbach, David
    Jarvis, Marc A.
    Yamaguchi, Masaya
    Yanishevski, David
    Petzold, Georg
    Sidhu, Sachdev S.
    Kuhlman, Brian
    Kirschner, Marc W.
    Harper, J. Wade
    Peters, Jan-Michael
    Stark, Holger
    Schulman, Brenda A.
    [J]. CELL, 2016, 165 (06) : 1440 - 1453