Research and Implementation of Multiple Behavior Based Recommender System in E-Commerce

被引:0
|
作者
Lei, Wei [1 ]
Wu, Gang [1 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai, Peoples R China
来源
2ND INTERNATIONAL CONFERENCE ON SIMULATION AND MODELING METHODOLOGIES, TECHNOLOGIES AND APPLICATIONS (SMTA 2015) | 2015年
关键词
Recommender system; Logistic regression; Collaborative filtering; Gradient boost regression tree;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Recommender systems provide users with personalized items. These systems often rely on collaborative filtering. Collaborative filtering does recommendation by finding out similar users or items. Collaborative filtering has a fatal weakness that the reliability of the similarity of users or items depends on users' preference list. If most users' preference list is short, namely most users show interest in only a few items, collaborative filtering loses its accuracy in finding similar users or items and performs poorly in recommendation. This defect is particularly obvious in EC system. In this paper, we introduce two regression based methods, logistic regression and gradient boosting regression tree to build a recommender system. Unlike traditional collaborative filtering, regression based methods do not focus on each user or item, but use all users' historical behavior data to build a single model. The single model then produces the probability of items a user might buy according to users' new behavior data. Items with high probability will be recommended to users. Our experiment shows that regression based methods performs much better than collaborative filtering.
引用
收藏
页码:871 / 876
页数:6
相关论文
共 50 条
  • [1] Recommender system in E-commerce: Research status and prospect
    Su, Yidan
    Wang, Yucai
    2005 International Symposium on Computer Science and Technology, Proceedings, 2005, : 522 - 530
  • [2] Recommender System Based on Product Taxonomy in E-Commerce Sites
    Kim, Yong Soo
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2013, 29 (01) : 63 - 78
  • [3] A Novel Recommender System for E-Commerce
    Chu, Pang-Ming
    Lee, Shie-Jue
    2017 10TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI), 2017,
  • [4] A Study on E-commerce Recommender System Based on Big Data
    Zhao, Xuesong
    2019 IEEE 4TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND BIG DATA ANALYSIS (ICCCBDA), 2019, : 222 - 226
  • [5] Building a better recommender system in E-commerce
    黎星星
    Journal of Chongqing University, 2003, (01) : 68 - 72
  • [6] An E-Commerce Recommender System Based on Content-Based Filtering
    HE Weihong~ 1
    2. School of Business
    WuhanUniversityJournalofNaturalSciences, 2006, (05) : 1091 - 1096
  • [7] A survey of E-Commerce recommender systems
    Wei, Kangning
    Huang, Jinghua
    Fu, Shaohong
    2007 INTERNATIONAL CONFERENCE ON SERVICE SYSTEMS AND SERVICE MANAGEMENT, VOLS 1-3, 2007, : 734 - +
  • [8] Collaborative Filtering on the Blockchain: A Secure Recommender System for e-Commerce
    Frey, Remo Manuel
    Woerner, Dominic
    Ilic, Alexander
    AMCIS 2016 PROCEEDINGS, 2016,
  • [9] A configuration-based recommender system for supporting e-commerce decisions
    Scholz, Michael
    Dorner, Verena
    Schryen, Guido
    Benlian, Alexander
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2017, 259 (01) : 205 - 215
  • [10] BIG DATA BASED RETAIL RECOMMENDER SYSTEM OF NON E-COMMERCE
    Sun, Chen
    Gao, Rong
    Xi, Hongsheng
    2014 INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND NETWORKING TECHNOLOGIES (ICCCNT, 2014,