Thermal contact resistance between the surfaces of silicon and copper crucible during electron beam melting

被引:23
作者
Wen, Shutao [1 ,2 ]
Tan, Yi [1 ,2 ]
Shi, Shuang [1 ,2 ]
Dong, Wei [1 ,2 ]
Jiang, Dachuan [1 ,2 ]
Liao, Jiao [1 ,2 ]
Zhu, Zhi [1 ]
机构
[1] Dalian Univ Technol, Sch Mat Sci & Engn, Dalian 116023, Liaoning Provin, Peoples R China
[2] Dalian Univ Technol, Key Lab Solar Energy Photovolta Syst Liaoning Pro, Dalian 116023, Liaoning Provin, Peoples R China
基金
中国国家自然科学基金;
关键词
Thermal contact resistance; Silicon and copper surfaces; Temperature field; Computer simulation; METALLURGICAL-GRADE SILICON; HEAT-TRANSFER; REMOVAL; MODEL;
D O I
10.1016/j.ijthermalsci.2013.07.005
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper proposed a theoretical model to determine the thermal contact resistance (TCR) on the surfaces of silicon and copper during electron beam melting. The effect of temperature and pressure on TCR, based on specific melting process conditions, was discussed. Hertz's theory was used to analyze the characteristics of material surfaces and to calculate the relationship between the pressure and distance of contact surfaces, the real contact area and the number of contact asperities combined with the physical characteristics of the material. The geometric parameter of the theoretical model was obtained based on theoretical calculations. The TCR of the entire surface was obtained by analyzing the temperature field of silicon and copper using Ansys and TCR equations. The relationship among TCR, pressure, and temperature were found. The computational results agreed with existing experimental results. (C) 2013 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:37 / 43
页数:7
相关论文
共 18 条
[1]   A 3D computational model of heat transfer coupled to phase change in multilayer materials with random thermal contact resistance [J].
Amara, M. ;
Timchenko, V. ;
El Ganaoui, M. ;
Leonardi, E. ;
Davis, G. de Vahl .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2009, 48 (02) :421-427
[2]   New processes for the production of solar-grade polycrystalline silicon: A review [J].
Braga, A. F. B. ;
Moreira, S. P. ;
Zampieri, P. R. ;
Bacchin, J. M. G. ;
Mei, P. R. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2008, 92 (04) :418-424
[3]   CONTACT OF NOMINALLY FLAT SURFACES [J].
GREENWOOD, JA ;
WILLIAMSON, JB .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1966, 295 (1442) :300-+
[4]   A predictive model for the thermal contact resistance at liquid-solid interfaces: Analytical developments and validation [J].
Hamasaiid, A. ;
Dargusch, M. S. ;
Loulou, T. ;
Dour, G. .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2011, 50 (08) :1445-1459
[5]   Measurement of temperature gradient in Czochralski silicon crystal growth [J].
Huang, XM ;
Taishi, T ;
Wang, TF ;
Hoshikawa, K .
JOURNAL OF CRYSTAL GROWTH, 2001, 229 (01) :6-10
[6]   Removal of phosphorus in molten silicon by electron beam candle melting [J].
Jiang, Dachuan ;
Tan, Yi ;
Shi, Shuang ;
Dong, Wei ;
Gu, Zheng ;
Zou, Ruixun .
MATERIALS LETTERS, 2012, 78 :4-7
[7]  
Johnson K.L., 1984, CONTACT MECH, P418
[8]  
Kapitza PL, 1941, J PHYS-USSR, V4, P181
[9]   Thermal contact resistance across a copper-silicon interface [J].
Khounsary, AM ;
Chojnowski, D ;
Assoufid, L ;
Worek, WM .
HIGH HEAT FLUX AND SYNCHROTRON RADIATION BEAMLINES, 1997, 3151 :45-51
[10]   Thermal contact conductance of spherical rough metals [J].
Lambert, MA ;
Fletcher, LS .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1997, 119 (04) :684-690